摘要 要达到设计性能所需的材料需要能够提供金属、陶瓷和金属陶瓷化学成分的配方和加工方法,这些成分必须在源头进行精细调整,并能耐受下游的热机械调整。研究人员不断利用计算热力学模型和改进的热机械处理技术开发结构钢和金属陶瓷,目前正在评估基于 8%–16% wt.% Cr 的氧化物弥散强化钢 (ODS) 还原活化铁素体-马氏体钢 (RAFM)。SiC f 和 CuCrZr 的组合作为含有活性冷却剂的金属基复合材料将被视为一个重大机遇,此外,由 SiC 纤维增强 SiC 基体且能够与金属结构连接的复合陶瓷材料在先进热交换器的开发中具有巨大潜力。继续讨论先进制造的主题,使用粉末冶金热等静压和放电等离子烧结等固态加工技术来生产金属、陶瓷和金属陶瓷的近净成形产品是关键的制造研究主题。增材制造 (AM) 用于生产金属和陶瓷部件现在正成为一种可行的制造途径,通过 AM 和减材加工的结合,可以生产出其他任何工艺都无法制造的高效流体承载结构。将其扩展到使用电子束焊接和先进的热处理来提高同质性和提供模块化,现在可以使用双管齐下的解决方案来提高能力和完整性,同时为设计师提供更大的自由度。
金属增材制造 (AM),例如激光直接能量沉积 (DED),因其能够为各种工业应用制造近净成形的复杂部件而越来越受欢迎。然而,DED 过程中的几何控制,尤其是在急转弯处的几何控制仍然是一项艰巨的任务。为了实现几何控制,几何估计以确定工艺参数和几何属性之间的关系至关重要。在本研究中,使用激光线扫描仪、视觉相机和域自适应神经网络 (DaNN) 为 DED 开发了一种实时层高估计技术。重点放在多层沉积期间尖角处的层高估计。首先,使用激光线扫描仪收集多层直线沉积数据并构建初始层高估计模型。然后,为了有效地实现角落沉积期间的层高估计,使用多层直线沉积数据和构建的初始模型建立了 DaNN 模型。使用视觉相机测量角落处的实际移动速度并将其作为输入特征之一输入到 DaNN 模型中。最后,在线更新 DaNN 模型以进一步提高角落沉积期间的估计精度。所提出的技术已通过DED实验验证,结果表明,当在不同角度的角落沉积多层平均高度为 250 µ m 的层时,可以在 0.018 秒内估算出层高,平均精度为 25.7 µ m。
在过去的几十年里,增材制造 (AM) 技术一直被视为传统制造工艺的替代方案 [1, 2]。快速生产各种材料的近净成形产品被认为是促进其大规模应用的主要优势 [3]。此外,只需一台机器即可轻松制造多种复杂形状和部件,而这些部件和部件是单个传统加工操作难以实现的,这也是其卖点 [4e6]。然而,由于 AM 技术现在已考虑在多个领域进行大规模生产,因此我们迅速发现了新的挑战,需要控制和解决这些挑战以适应 AM 的发展速度 [7,8]。薄壁结构、复杂曲面和晶格结构是优先通过 AM 技术生产的主要几何部件 [9,10]。由于材料损失大、尺寸问题、设备限制以及内腔制造(尤其是晶格结构),传统制造程序存在严格的限制 [11, 12]。但另一方面,通过 AM 生产这些组件也存在一些限制和局限性。由于使用高功率热源,通过 AM 通常无法实现高精度和严格遵守公差要求 [13, 14]。此外,基于材料添加的制造概念允许在制造过程中添加残余材料 [15, 16]。另一方面,减材加工程序可产生高质量的产品 [17]。然而,由于几何复杂性,减材加工的几何条件并不总是有利 [18, 19]。因此,这两种程序的结合应用可以创建一个更好的制造策略。在这两种技术的混合方法中,增材制造可以制造出具有近净形状几何和尺寸特征的原始零件[20],而减材加工操作可用于精加工这些原始零件,以达到所需的尺寸精度和表面光洁度[21]。此外,支撑
定向能量沉积 Geovana Eloizi Ribeiro Vincent Edward Wong Diaz Willian Roberto Valicelli Sanitá Alessandro Rodrigues 圣保罗大学圣卡洛斯工程学院机械工程系 电子邮件: vwong.ufs@gmail.com 、geovana_rib@usp.br 、willian.r.sanita@usp.br 、roger@sc.usp.br、Reginaldo Coelho Teixeira 圣保罗大学圣卡洛斯工程学院生产工程系 rtcoelho@sc.usp.br 摘要:金属增材制造已经成为一种技术,能够以“近净成形”形式生产复杂金属零件、进行修复和使用梯度材料创建零件,从而能够制造高附加值和低产量的零件。激光和粉末定向能量沉积 (LP-DED) 是增材制造工艺的一种,通过集中的热能使金属粉末熔化。这些应用对航空航天、汽车和医疗等不同领域都具有吸引力。在医疗领域,其应用主要集中在制造植入物、假肢、仪器和医疗器械。在假肢和植入物的制造中,Ti6Al4V 钛合金因其高机械强度、高耐腐蚀性、低密度以及良好的生物相容性而脱颖而出。文献挑战之一反映了 LP-DED 工艺赋予打印部件的粗糙度,这会影响假肢和植入物的骨整合,与其恢复时间和成功率有关。本文评估了使用两种粉末从 LP-DED 工艺获得的 Ti6Al4V 部件的粗糙度。第一种是通过气体雾化生产的,第二种是通过先进的等离子雾化生产的。随后,在纯 Ti 基体上用 LP-DED 制造了八个样品。激光功率是另一个输入变量,范围从 300 W 到 345,增量为 15W。用去离子水和丙酮用超声波振动清洁样品。然后,我们使用共聚焦显微镜评估样品的粗糙度。所用粉末的粉末形貌表明,气雾化产生的粉末呈现非高斯分布,有薄片、孔隙和卫星。与气雾化粉末相比,先进等离子雾化产生的粉末呈现高斯分布,孔隙数量更少,卫星和薄片的存在也更少。关键词:定向能量沉积;粗糙度;Ti6Al4V,增材制造。1. 介绍
Markus Mirz 1 m.mirz@iwm.rwth-aachen.de ; Marie Franke-Jurisch 2 marie.franke-jurisch@ifam- dd.fraunhofer.de ; Simone Herzog 1 s.herzog@iwm.rwth-aachen.de ; Anke Kaletsch 1 a.kaletsch@iwm.rwth-aachen.de ; Christoph Broeckmann 1 c.broeckmann@iwm.rwth-aachen.de 1 德国亚琛工业大学机械工程材料应用研究所 2 德国德累斯顿弗劳恩霍夫制造技术与先进材料研究所 摘要 粉末冶金法 (PM) 热等静压 (HIP) 中抽真空管的主要用途在于对胶囊进行抽真空和排气。传统的 HIP 胶囊由具有良好可焊性的金属板制成,因此易于连接抽吸管。随着增材制造 (AM) 等新兴技术的出现,现在可以设计更复杂的 HIP 胶囊。此外,还可以使用耐磨、富含碳化物的钢。然而,众所周知,这些材料难以焊接。本研究比较了两种不同的方法,将 AISI 304L 抽吸管粘合到由电子束熔化 (EBM) 以高碳工具钢 AISI A11 制成的 HIP 胶囊上。胶囊通过 TIG 焊接和钎焊连接,使用传统填充材料和基于热力学计算的定制填充材料。随后通过 HIP 进行固结,微观结构分析和氩气测量揭示了这三种方法对于气密接头的可行性和局限性。简介热等静压 (HIP) 是一种将金属粉末固结成固体材料的成熟工艺。它是在航空航天、汽车、石油和天然气等要求严格的行业中生产近净成形零件最可靠的成形工艺之一 [1]。使用一个或多个填充管将粉末填充到薄壁胶囊中。为了达到理想的高填充密度,填充过程通常在恒定振动下进行 [2]。之后,胶囊内的散装粉末通过真空泵通过抽气管排气,并在真空下保持数小时。在仍处于真空状态时,可通过锻造和焊接抽气管来封闭胶囊。在高温高压下,在 HIP 容器内对封装和脱气的粉末压块进行致密化 [3,4],这是最后一步,之后通过锯切、车削或铣削取出胶囊以获得成品部件。整个 HIP 工艺链如下图所示。