Astrobotic 的着陆器可以将有效载荷送至月球轨道和月球表面。虽然轨道会因任务不同而变化,但 Peregrine 和 Griffin 通常保持在三个不同的月球轨道 (LO) 中,其中两个可用于部署有效载荷。近地点始终为 100 公里,而远地点则通过月球轨道插入 (LOI) 机动从 8700 公里减小到 100 公里的圆形轨道。轨道倾角通常由表面着陆点决定。
美国宇航局计划在 2024 年之前将人类送回月球 [1]。这引发了人们对月球探索任务的兴趣。为了有效地将人类和机器人任务送上月球,正在研究不同的最佳低和/或高推力轨道转移。最简单、最快速但不节能的方法是霍曼转移 [2]。霍曼转移需要两次燃烧,一次在轨道的近地点,另一次在远地点。航天器在地球停泊轨道上时位于近地点,远地点设置在所需的月球轨道高度。另一种研究航天器从地球到月球的转移的方法是使用拼块圆锥曲线法。拼块圆锥曲线近似依赖于太阳系动力学的开普勒分解 [3]。通过沿轨道小心地切换 SOI(影响球),航天器的运动在给定时间内仅受一个主要天体控制。例如,在使用补片圆锥曲线进行地球到月球转移的情况下,航天器在转移的大部分时间里将位于地球的 SOI 中,而在最后的时间里只靠近月球。霍曼转移和补片圆锥曲线都是 2BP(二体问题)中简单、直接的转移方法。从 1960 年代到 1980 年代,包括月球和阿波罗任务在内的所有登月任务都使用了一些对霍曼和补片圆锥曲线转移的改动。2BP 向月球的转移受到发射窗口的限制,并且需要多次修正燃烧,从而增加了总 Δ𝑉 成本。以阿波罗 11 号为例,它必须进行两次月球轨道交叉燃烧和四次中途修正。阿波罗 11 号进入月球轨道所需的总 Δ𝑉 为 13571.1 ft/s(4.136 km/s)[4]。
r = [ x, y, z ] 笛卡尔坐标系中的位置向量及其元素 a G = [ a G x , a G y , a G z ] 标准化重力加速度 er 小行星轨道偏心率 ar 小行星轨道半长轴(米) fr 小行星轨道真异常(弧度) U 与小行星谐波相关的标准化重力势能 d 太阳与小行星之间的距离 LU 距离单位 TU 时间单位 β 太阳辐射压标准化加速度 a SRP 太阳辐射压非标准化加速度(米/秒2) γ 反射率 p 0 太阳通量常数(千克·米/秒2) m 探测器质量(千克) A 探测器投影面积(米2) μ S 太阳引力参数(米3/秒2) μ 小行星引力参数(米3/秒2) P 勒让德多项式 l, m 考虑的谐波的阶数和次数 C lm , S lm 库存系数 φ 小行星固定框架中的纬度(弧度) λ 经度(弧度) n 平均运动(弧度/秒) CJ 雅可比积分(米2/秒2) vc 临界速度(米/秒) vo 二体问题中的圆轨道速度(米/秒) vm 速度裕度(米/秒) a 航天器轨道的半长轴(米) e 航天器轨道的偏心率 I 航天器轨道的倾角 W 航天器轨道上升节点的经度 w 航天器轨道的近地点增强 f 航天器轨道的真异常
- YG-36(05) 位于该星座的典型轨道上,远地点约 505 公里,近地点约 491 公里,倾角 35°。随着 YG-36(05) 进入领先-尾随-尾随编队,这些数字将在未来几周内发生变化。-正如模式所料,YG-36(05) 与 YG-35 三重奏平面匹配,这次是 YG-35(04)。- 以下是其他配对:1) YG-36(01) 和 YG-35(01);2) YG-36(02) 和 YG-35(02);3) YG-36(03) 和 YG-35(05);4) YG-36(4) 和 YG-35(03)。 - 三颗卫星中的两颗由航天东方红卫星有限公司研制,第三颗由上海航天技术研究院 (SAST) 研制,这两颗卫星均隶属于中国航天科技集团公司。 (所有 YG-35 和 36 三重奏都是如此)。 - 中国官方媒体披露了有关这些卫星的少量细节。 该国新华社称,这些卫星将主要用于测试“新的对地观测技术”。 - 2018 年至 2020 年期间,中国发射了 8 颗具有相似轨道和编队的新五星卫星,轨道参数相似。 所有卫星的倾角均为 35°,高度在 460 - 475 千米之间。 - 遥感 35/36 卫星可能采用领尾配置运行,领头卫星可能会为两颗尾随卫星提供线索。
表2-1土地使用控制总结2-2补救措施的状态,2012年2 - 3年2-3 OU1,NBCGRS抽水/VOC批量删除数据,2009财年2-4 OU1,NBCGRS抽水/VOC量减去数据,FY 2010 2-5 OU1 2-5 OU1,NBCGRS PUMSIGS PUMPING/VOC PUMPING/VOC PUMPALT/vov Data,fy 2011 2-6 OU1,NB 2011,NB 2012 2-7 OU1,PGAC废水质量,2012年第3-1财产H地下水质量数据,用于浅层土地监控,2009财年3-2 TGRS(近地点D和G)地下水质量数据,2011年第3-3场地下水质量数据,2012年3-4个现场C c 2012年3-4个网站c 2011年fy 2011 fy 2011 fy i groun f y Moder fy y Modly fy 2011,fy,FY,FY,FY,FY,FY,FY,FY,FY,FY,FY 2011 2012财年3-7个现场K处理系统浓度(有机物),2012年3-8建筑物102地下水质量数据,2012财年3-9地表水的水质结果3-10 TGRS地下水清理水平3-11 TGRS提取井水泵
通过地面激光器发出的单个多 kJ 脉冲避免低地球轨道上的空间碎片发生烧蚀碰撞 Stefan Scharring、Gerd Wagner、Jürgen Kästel、Wolfgang Riede、Jochen Speiser 德国航空航天中心 (DLR),技术物理研究所,Pfaffenwaldring 38-40,70569 斯图加特,德国 摘要 我们对一个概念性想法进行了分析,即从地面激光站发射的单个高能激光脉冲是否可能导致碎片物体表面的物质烧蚀,从而产生后坐力,从而产生足够高的速度变化,以避免空间碎片碰撞。在我们的模拟中,我们评估了大气限制的影响,例如由于气溶胶消光导致的激光功率损失以及由于大气湍流导致的激光束增宽和指向抖动。为了补偿湍流,探索了自适应光学系统在合适发射器配置和激光导星组合方面的使用。根据 ESA DISCOS 目录,使用具有简化几何形状的虚拟目标来研究激光与火箭体、任务相关物体和非活动有效载荷之间的相互作用。此外,NASA 标准破碎模型可作为碰撞和爆炸碎片的参考,这些碎片在低地球轨道上产生了 9101 个碎片目标。对于这些物体,使用基于光线追踪的代码对激光烧蚀后坐力进行了研究,同时考虑了未知的目标方向以及残余激光指向误差,这些误差构成了整个 5 个维度(3 个旋转,2 个平移)的随机性来源,这些随机性来源采用蒙特卡罗方法解决。根据特定碎片物体平均高度的计算激光通量分布计算激光动量耦合。作为计算激光与物质相互作用的输入,使用了铝、铜和钢作为代表性空间碎片材料的辐照实验数据。从照射仰角、轨道位移、动量转移不确定性、成功概率、碎片材料以及碎片尺寸、质量和启动激光烧蚀过程所需的最小能量密度等方面讨论了激光赋予动量的模拟结果。1.引言由于空间碎片的数量不断增加,且难以进行轨道改造,近年来提出了几种基于激光的空间碎片远程动量转移 (MT) 概念[1][2]。特别是,由于连续发射 (CW) 激光器的商业化应用,其平均输出功率超过 10 kW 级,通过光子压力进行 MT 似乎变得可行。为了避免空间碎片碰撞,模拟已经表明,在多次激光站过境期间,通过目标照射可以实现几毫米/秒的足够高的速度增量 [1]。最近,在 LARAMOTIONS(激光测距和动量传递系统演化研究)研究中,研究了用于碎片跟踪和避免碰撞的相应激光站网络的可行性和估计性能。这项研究是由我们研究所领导的一个财团为欧洲航天局 (ESA) 开展的概念分析。[3] 概述了研究结果,[4] 列出了使用光子压力进行轨道碰撞避免的详细天体动力学可行性研究,而 [5] 显示了所采用的激光站网络的详细结果。激光烧蚀的动量耦合比光子压力的耦合高出 3 到 5 个数量级 [6]。因此,烧蚀通常被认为是在多次高能激光站过境期间通过降低近地点清除激光碎片的合适机制。然而,最近在真空中对几厘米大小的物体进行的跌落实验表明,激光烧蚀动量转移在避免空间碎片碰撞方面具有巨大的潜力,证明单个激光脉冲就可能使小的空间碎片状物体产生几十 ⁄ 的速度变化∆ [7]。