• 数字货币当局通过央行、审慎监管局 (PRA) 和英国金融行为监管局的跨部门支付创新路线图 7 ,对数字货币做出了更清晰的说明,该路线图展示了在电子货币、稳定币和代币化银行存款方面的计划工作。此外,两份讨论文件征求了业界意见,一份是关于监管法定货币支持的稳定币的监管方法 8 ,另一份是关于使用稳定币和相关服务提供商的系统支付系统的监管制度 9 。央行正在就通过其实时总结算系统 (RTGS) 10 扩大银行资金批发渠道的计划进行磋商。最后,Fnality 是一种寻求实现链上支付的新型支付系统,它宣布通过其基于 DLT 的英镑 Fnality 支付系统 (£FnPS) 进行了首笔实时交易,该系统利用了央行资金的数字化表示 11 。
FLACK, KD、HM HAYS、J. MORELAND 和 DE LONG。运动减肥:进一步评估运动的能量补偿。《运动锻炼医学科学》,第 52 卷,第 11 期,第 2466 – 2475 页,2020 年。目的:本研究评估了个体在 12 周有氧运动干预期间如何补偿能量消耗,阐明潜在机制以及运动剂量在补偿反应中的作用。参与者和设计:针对 18 至 40 岁、体重指数为 25 至 35 的久坐成年人进行三组随机对照试验。组别包括每周六次锻炼、每周两次锻炼和久坐对照组。方法:运动能量消耗率是根据五个心率区平均的分级运动测试计算得出的。能量补偿计算为预期体重减轻(基于运动能量消耗)与脂肪和非脂肪质量(DXA)变化之间的差值。通过间接量热法评估静息能量消耗,并评估空腹和餐后(2 小时内 6 个时间点)酰化生长素释放肽、瘦素、胰岛素和胰高血糖素样肽 1 (GLP-1) 的浓度。结果:6 天·周 -1 组每周消耗的能量(2753.5 kcal)更多,运动时间(320.5 分钟)比 2 天·周 -1 组(1490.7 kcal,1888.8 分钟,P < 0.05)更长,因此与 2 天或对照组相比,脂肪减少更多(P < 0.05)。运动组在补偿的百分比或总 kcal 方面没有差异。酰化生长素释放肽的曲线下面积 (AUC) 下降幅度越大,预示着脂肪减少幅度越大,无论组别、每周消耗的能量、锻炼持续时间或锻炼强度如何。瘦素 AUC 的变化是能量补偿的唯一独立预测因素,瘦素 AUC 下降幅度越大,预示着能量补偿越少。锻炼频率、消耗的能量、持续时间或强度不影响能量补偿。结论:瘦素是通过锻炼成功减肥的重要因素,餐后瘦素下降幅度越大,则补偿越少。锻炼量越大不会影响对锻炼引起的能量不足的补偿反应。关键词:能量补偿、锻炼、减肥、瘦素、生长素释放肽 I
带有3.5英寸图形智能显示屏的LCD颜色监视器允许操作员轻松有效地控制机器。监视器提供有关速度和加速器级别,转向角度和旅行方向,电池放电指示器,小时计和工作模式的信息。操作员可以选择各种性能模式以满足所有工作条件。多语言(最多12)可用。
FPGA 加速卷积神经网络已经被人们广泛研究 , 大部分设计中最终性能都受限于片上 DSP 数量 . 因 此 , 为了进一步加速 FPGA, 人们开始将目光移向了快速算法 . 快速算法能够有效降低卷积操作的乘 法次数 , 提高加速比 , 相比于非快速算法 , 快速算法需要一些额外的操作 , 这些操作大部分都是常数乘 法 , 在硬件实现过程中 , 这些常数乘法会被转换为多个位运算相加的操作 , 位运算可以不需要消耗片上 的 DSP 资源 , 仅使用 LUT 阵列就可以实现位运算 . 从近两年的研究现状来看 , 基于快速算法的工作 在逻辑资源使用方面确实要高于非快速算法的工作 . 此外 , 快速算法是以一个输入块进行操作 , 因此对 于片上缓存的容量要求更高 . 并且快速算法加快了整体的运算过程 , 因此对于片上与片外数据带宽需 求也更大 . 综上所述 , 快速算法的操作流程异于传统的卷积算法 , 因此基于快速算法的新的 FPGA 架 构也被提出 . 第 4 节将会简述国内外关于 4 种卷积算法的相关工作 .
《法律记录》(ISSN 1052-6064,USPS 150-300)是一份发行量较大的报纸,致力于让公众了解政治、社会、商业和宗教方面发生的事件。每周二由 Lewis Legal News, Inc. 出版,地址为 1701 E. Cedar, Suite 111, Olathe, KS 66062。期刊类邮资在堪萨斯州奥拉西支付。邮政局长:将地址变更寄至《法律记录》,地址为 1701 E. Cedar, Suite 111, Olathe, KS 66062。订阅费率 - 每年 63.50 美元。包括堪萨斯州销售税。过期刊物价格为每本 11 美元。要订购,请致电 (913) 780-5790。《法律记录》完全符合 KSA 64-101 和所有其他适用法规,可以发布法律通知。本文中的某些新闻和信息取自公共记录,并在没有偏见或责任的情况下发布。《法律记录》对错误或遗漏不承担任何责任。在任何情况下,本报都不会应要求拒绝发表任何公共记录。本报不对已发表的通讯或投稿的社论中表达的观点负责。《法律记录》要求并严格遵守以下条件提供服务:提交法律通知以供发表的一方负责支付出版费用。当律师或律师事务所提交法律通知以供发表时,《法律记录》要求并严格遵守以下条件提供服务:提交法律通知以供发表的律师负责支付出版费用版权所有 © 2025,Lewis Legal News, Inc. 保留所有权利。《法律记录》上发表的材料是花费大量金钱编写的。任何转载、录制或侵犯版权的行为都将受到法律补救。
用电子氢替代部分化石燃料氢。这种电子氢生产的规模不一定小,因为传统的哈伯-博世合成工厂非常大。如今,工业氨生产厂平均日产氨 500-1,500 公吨 (MTPD),最大的工厂日产氨超过 3,500 公吨。以氨的大规模性为例,假设容量系数为 50%,用电子氢替代仅 200 MPTD 的产量就需要 150-200 MW 的可再生电力资源和类似规模的电解。2下一步,将利用大量可再生能源建造新的电子氨工厂。完全电子氨生产的一个挑战是需要工艺灵活性来管理可变的可再生能源,例如太阳能和风能。如今,哈伯-博世工厂基于化石燃料原料针对连续运行进行了优化,因此运行灵活性有限。灵活操作的风险包括热循环导致催化剂和设备寿命缩短以及生产效率降低。目前可以实施的一种解决方案是使用大型储氢缓冲器来管理不灵活的哈伯-博施工艺中间歇性的可再生能源原料。采用这种设计,哈伯-博施工艺将始终有恒定的原料。更好、更具成本效益的解决方案是优化哈伯-博施工艺,使产量根据可再生能源投入而变化。这种调节能力可能通过各种工厂设计和操作技术来实现。最后,电子氨合成的新技术,如低压、低温或电化学合成,仍处于实验室规模的研究阶段。近期的电子氨生产设施可能会使用哈伯-博施合成和某种形式的灵活性管理。