自 20 世纪末以来,雷达技术已得到广泛应用,尤其是在海事和航空领域 [1-3]。雷达技术中最重要的课题之一是在背景噪声中探测隐形目标。另一方面,当前量子技术的发展为远程探测提供了新的可能性,从而产生了量子雷达的概念。本文提出了一种基于光子对之间量子纠缠的量子雷达“玩具模型”。这种简单的模型并不追求逼真,而是具有关于量子雷达潜力的教育价值。当前用于传输信息的量子技术的发展引入了“量子雷达”的概念,尽管直到 2008 年 Lloyd 的文章发表之前,这个想法一直没有引起人们的兴趣 [4]。在这篇文章中,Seth Lloyd 表明,与光子对的量子纠缠可以显著提高光频范围内的远程探测灵敏度。这种利用纠缠进行远程检测的方式称为“量子照明”(QI)。自本文发表以来,人们对量子雷达领域的兴趣日益浓厚。该主题已经开展了新的理论和实验研究 [5-12]。围绕量子雷达的研究已经从关注单个光子转向小束光子 [4,11]。同样,研究也从光学频率范围 [4] 转向微波频率范围 [11-13],这更适合雷达应用,但也更具挑战性。在此背景下,目前正在开发新技术,以使微波领域的量子照明成为可能。例如,我们可以引用约瑟夫森结,它能够在低温下直接产生微波纠缠光子。还有光学光子和微波光子之间的耦合 [11]。然后,氮空位中心(称为 NV 中心)也允许产生微波纠缠光子。尽管这种量子雷达的可行性面临巨大困难,但该研究领域仍然非常活跃。量子雷达与传统雷达的用途相同,但其功能依赖于量子力学原理。
2 桑迪亚国家实验室,美国新墨西哥州阿尔伯克基 87185 3 加利福尼亚大学机械工程系,加利福尼亚州圣巴巴拉 93106,美国 a) 通讯作者:aatalin@sandia.gov 了解和控制电荷载流子与埋藏绝缘体/半导体界面缺陷的相互作用对于实现现代电子产品的最佳性能至关重要。在这里,我们报告了使用扫描超快电子显微镜 (SUEM) 远程探测埋藏在厚热氧化物之下的 Si 表面的激发载流子的动力学。我们的测量结果展示了一种新颖的 SUEM 对比机制,即半导体中空间电荷场的光学调制会调制厚氧化物中的电场,从而影响其二次电子产量。通过分析 SUEM 对比与时间和激光能量密度的关系,我们证明了界面陷阱通过扩散介导捕获激发载流子。
地雷和埋藏的简易爆炸装置对现代冲突地区的美国作战人员来说是一个真实而持续的威胁。这些威胁在战斗平息后仍会持续数十年,每年造成数千名平民(通常是儿童)死亡或致残。从空中安全远程探测埋藏的威胁可以减少军人和平民的伤亡,同时提高部队的机动性。耦合声光技术在探测和辨别埋藏目标方面很有前景:声波震动地面并激发埋藏地雷的响应,这些响应可以用扫描激光测振仪检测到。海军有意将该系统安装在无人直升机上,以便快速部署、快速勘察,并确保参与的士兵几乎完全安全。Creare 正在开发一种紧凑型机载声学发射器 (CAAT) - 一种轻便高效的声源 - 以产生高强度、低频声波,足以从离地面 2,000 英尺的高度震动地面。我们的第一代原型机在尺寸、重量、功率等方面达到或超过了海军的规格要求,