大脑的皮质可塑性是使我们能够学习和适应环境的主要特征之一。的确,由于两种形式的可塑性,大脑皮层具有自组织的能力:结构性塑性性,从而产生或削减了神经元之间的突触连接,并改变了突触可塑性,从而改变了突触连接的力。这些介绍很可能是基于人脑发展的极其竞争的特征:多模式关联。故障,感觉方法的多样性,例如视觉,声音和触摸,大脑都达到了相同的概念。此外,生物学观察结果表明,当两者相关时,一种模态可以激活另一种方式的内部表示。为了建模这种行为,Edelman和Damasio分别提出了逆转和收敛/发散区,在该区域中,双向神经通信可以导致多模式融合(收敛)和模态激活(差异)。尽管如此,这些理论框架并未在neu-rones级别提供计算模型。本论文的目的是首先以(1)的(1)多模式学习而不是超级靶向的,(2)的(2)在能量水平上对能量处理的(3)能量处理的(2)。我们提出并比较不同的标签方法,以最大程度地减少标签数量,同时保留最佳精度。根据这些准则和对文献神经模型的研究,我们选择了Kohonen提出的自组织(SOM)卡作为我们系统的主要组成部分。我们介绍了迭代网格,这是一个完全分布在材料神经元之间的架构,该架构允许在SOM中进行蜂窝计算,因此,在处理和连接时间方面逐渐了解的系统。然后,我们在释放的标签后学习中评估了SOM的性能:在训练期间没有标签,那么很少有标签可用于标记SOM的神经元。我们使用SPIKE(SNN)中的神经网络将表演与不同的方法进行比较。然后,我们建议使用提取的特征而不是原始数据提高SOM的性能。我们正在使用两种不同的方法从MNIST数据库中提取SOM分类的研究:一种具有卷积自动介绍者的机器学习方法和SNN的生物启发方法。为了证明SOMA冲突的能力 - 如果数据更复杂,我们通过传输DVET使用Mini-Imagenet数据库来使用学习。完成,我们转到多模式关联机制。我们通过使用SOMAS和每周学习来基于最近的原理来构建以生物启发的垃圾模型。我们提出并比较不同的