摘要:采用化学酰亚胺化法制备了具有刚性聚合物主链的氟化芳香族聚酰亚胺 (FAPI) 薄膜。聚酰亚胺薄膜表现出优异的力学性能,包括高达 8.4 GPa 的弹性模量和高达 326.7 MPa 的拉伸强度,以及突出的热稳定性,包括玻璃化转变温度 (T g ) 为 346.3–351.6 ◦ C 和空气中的热分解温度 (T d5 ) 为 544.1–612.3 ◦ C,以及在 500 nm 处>81.2% 的高无色透过率。此外,聚酰亚胺薄膜在 10–60 GHz 下表现出稳定的介电常数和低介电损耗,这归因于刚性聚合物主链的紧密堆积限制了电场中偶极子的偏转。还建立了分子动力学模拟来描述分子结构和介电损耗的关系。
美国质量协会 (ASQ) ASQ-Z1.4 — 按属性检验的程序、抽样和表格(国防部采用)。(可从 www.asq.org 获取此文件的副本。)ASTM INTERNATIONAL ASTM A1008/ - 钢材、板材、冷轧、ASTM A1008M 碳、结构、高强度低合金、具有改进的成形性要求硬度、溶液硬化和可烘烤硬化的高强度低合金的标准规范(DoD 采用) ASTM B152/B152M - 铜板、带、板和轧制棒的标准规范(DoD 采用) ASTM B633 - 钢铁上锌电镀层的标准规范(DoD 采用) ASTM D471 - 橡胶性能的标准测试方法 - 液体的影响(DoD 采用) ASTM F15 - 铁-镍-钴密封合金的标准规范 ASTM F1249 - 水蒸气透过率的标准测试方法使用调制红外传感器通过塑料薄膜和薄片(这些文件的副本可从 www.astm.org 获得。)静电放电协会 (ESD) ANSI/ESD STM 11.11 - 平面材料的表面电阻测量 - 保护静电放电敏感物品的标准测试方法 ANSI/ESD STM 11.31 - 评估静电放电屏蔽材料的性能 - 袋子,标准测试方法(这些文件的副本可从 www.esda.org 获得。)
电致变色 (Electrochromic, EC) 是材料的光学属 性 ( 透过率、反射率或吸收率 ) 在外加电场作用下发 生稳定、可逆颜色变化的现象 [1] 。 1961 年 , 美国芝 加哥大学 Platt [2] 提出了 “ 电致变色 ” 的概念。到 1969 年 , 美国科学家 Deb [3] 首次报道了非晶态三氧化钨 (Tungsten Trioxide, WO 3 ) 的电致变色效应。随后 , 人 们开始对电致变色材料进行了广泛而深入的研究。 20 世纪 80 年代 , “ 智能窗 ” 概念提出后 [4] , 由于节能环 保、智能可控等优点 , 形成一波新的电致变色技术研究 热点 [5-10] 。随着研究的深入 , 特别是纳米技术的快速 发展 , 器件性能得到了大幅的提升 ( 图 1(a)) [11-13] , 电 致变色器件 (Electrochromic Device, ECD) 也逐渐实现 了产业化应用。 根据材料种类不同 , 电致变色材料可大致分为 有机电致变色材料和无机电致变色材料。相较而言 , 有机电致变色材料具有变色速度快、柔性好、可加 工性强和颜色变化丰富等优点 , 主要包括导电高分 子、紫罗精类小分子和金属有机螯合物等 [14] 。无机 电致变色材料具有光学对比度高、光学记忆性好和 环境稳定性高等优点 , 主要包括过渡金属氧化物以 及普鲁士蓝等 [15] 。目前 , 电致变色器件的结构主要 为类三明治结构 , 由两个透明导电层中间夹一层电 致变色活性层构成。根据电致变色材料种类不同 , 电致变色活性层可分为整体结构和分层结构。整体 结构是电致变色材料与电解质相互混合为一层 , 这 类结构主要针对紫罗精等小分子有机物。这类器件 在外加电场作用下 , 有机小分子扩散到电极表面或 以电解质中氧化还原剂为媒介发生氧化还原反应而 实现颜色变化 [16] 。分层结构是电致变色材料、电解 质和对电极 ( 或叫离子储存层 ) 依靠界面接触分层 ,