摘要 — 量子力学的独特且常常奇怪的性质允许信息载体同时通过多个量子信道轨迹传播。这最终将我们引向具有不确定因果顺序的量子信道的量子轨迹。已经证明,不确定的因果顺序能够打破瓶颈容量,这限制了通过具有明确定义的量子信道因果顺序的经典轨迹可传输的经典和量子信息的数量。在本文中,我们将在纠缠辅助的经典和量子通信领域研究这一有益特性。为此,我们推导出经典和量子轨迹上任意量子泡利信道的纠缠辅助经典和量子通信的闭式容量表达式。我们表明,通过利用量子信道的不确定因果顺序,我们可以获得超过经典轨迹的容量增益以及各种实际场景的瓶颈容量突破。此外,我们确定了量子轨迹上的纠缠辅助通信相对于经典轨迹获得容量增益的操作区域以及量子轨迹上的纠缠辅助通信违反瓶颈容量的操作区域。
量子网络是实现分布式量子信息处理的关键。由于单链路通信速率随距离呈指数衰减,为了实现可靠的端到端量子通信,节点数量需要随网络规模增长。对于高度连接的网络,我们发现容量会随着网络节点密度的增加而出现阈值转变——在临界密度以下,速率几乎为零,而在阈值以上,速率随密度线性增加。令人惊讶的是,在阈值以上,由于量子网络支持多路径路由,两个节点之间的典型通信容量与它们之间的距离无关。相比之下,对于连接较少的网络(例如无标度网络),端到端容量会随着节点数量的增加而饱和为常数,并且始终随距离衰减。我们的结果基于容量评估,因此可观容量的最小密度要求适用于任何量子网络的一般协议。
*1 应用光子技术部分的功率效率目标值。 *2 每根光纤的目标通信容量。 *3 同一县内不需要压缩处理的视频流量的目标端到端延迟。
美国国防部 (DOD) 已投资超过 74 亿美元来开发和生产移动用户目标系统 (MUOS)。MUOS 是国防部最新的超高频(窄带)军用卫星通信系统,旨在为作战人员提供全球语音和数据通信,无论在大多数天气条件下,还是在茂密的树叶和城市地形中。海军设计了 MUOS 系统,该系统由四颗卫星、一颗在轨备用卫星以及一个地面控制和网络管理系统组成。该计划旨在为更多用户提供先进的卫星通信,通信容量至少增加 10 倍,而不是它所取代的系统,称为超高频 (UHF) 后续系统。MUOS 开发活动始于 2004 年,2012 年发射了第一颗卫星,2016 年发射了第五颗也是最后一颗计划中的卫星。
2.1目前窄带(L波段、VHF、HF)系统多用于座舱通信,提供语音和数据通信服务;Ku/Ka波段多用于客舱通信,为客舱旅客提供互联网接入服务。随着以Ka/Ku高通量卫星为代表的新一代宽带卫星技术的发展和成熟,客舱通信容量大幅提升,单机速率已高达100Mbps,流量成本大幅降低(目前约为座舱成本的1/100或以下)。以座舱宽带连接为特征的新一代互联飞机,有助于提升航空公司运维和管控服务能力,未来将迎来爆发式发展。近年来,包括Inmarsat在内的许多国家和组织都在大力发展和部署高通量卫星。HTS业务网络的快速发展,为一体化驾驶舱客舱宽带空地互联的规模应用提供了有利条件和机遇。
摘要 — 量子技术越来越多地被公认为突破性的进步,它利用纠缠和隐形传态等量子现象,重新定义计算、通信和传感领域。量子技术提供了一系列有趣的优势,例如无条件安全性、大通信容量、无与伦比的计算速度和超精确传感能力。然而,它们的全球部署面临着与通信范围和地理边界相关的挑战。非地面网络 (NTN) 已成为解决这些挑战的潜在解决方案,它通过提供自由空间量子链路来规避光纤固有的指数损耗。本文深入研究了量子技术与 NTN 之间的动态相互作用,以揭示它们的协同潜力。具体而言,我们研究了它们的集成挑战以及促进量子和 NTN 功能共生融合的潜在解决方案,同时确定了增强互操作性的途径。本文不仅对相互优势提供了有用的见解,而且提出了未来的研究方向,旨在启发进一步的研究并推进这种跨学科合作。
近半个世纪以来,硅基微电子技术与光纤通信引发了一场影响深远的信息技术革命,将人类社会带入了高速信息时代,对通信容量和速率的需求呈指数级增长,而数据中心和高性能计算则面临着电互连速度、带宽、能耗等瓶颈制约,硅基光电子技术成为突破这些瓶颈的关键技术。硅凭借折射率高、可容纳小型有源元件、与CMOS兼容工艺等优势,可以在微芯片上以低成本、低能耗实现大规模光电集成,成为芯片产业的热门选择。此外,硅基光电子技术还催生了中红外通信、微波光电子学、片上实验室、量子通信、光电计算、芯片级激光雷达等一系列新的研究领域。本期特刊“硅光子学的最新进展”涵盖了该领域器件和应用的最新发展。本期特刊包含五篇评论文章和四篇原创研究文章,重点关注数据中心相干互连、光电计算、集成量子电路和硅基光电混合集成中的关键器件及其应用。
摘要 — 集成传感和通信 (ISAC) 技术的最新进展为解决下一代无线通信网络 (6G) 车对万物 (V2X) 中的通信质量和高分辨率定位要求带来了新的可能性。同时为车辆目标的智能服务提供高精度定位和高通信容量 (CC) 具有挑战性。在本文中,我们提出了一种可重构智能表面 (RIS) 辅助的 6G V2X 系统,以在满足基本通信要求的情况下实现车辆目标的高精度定位。我们提供了车辆目标的 CC 和 3-D 费舍尔信息矩阵 (FIM) 公式。我们展示了反射器单元中的相位调制对联合定位精度和 CC 性能的直接影响。同时,我们设计了一个灵活的深度确定性策略梯度 (FL-DDPG) 算法网络,采用 ϵ -贪婪策略来解决高维非凸优化问题,在满足各种 CC 要求的同时实现最小定位误差。仿真结果表明,FL-DDPG算法将定位精度提升了至少89%,将车辆目标的到达率提升了近3倍,优于传统数学方法。与经典的深度强化学习方法相比,FL-DDPG在满足通信要求的前提下获得了更好的定位精度。当面对不完美信道时,FL-DDPG能够有效解决ISAC系统中的信道估计误差问题。
自从卫星首次进入太空以来,地球观测 (EO) 一直是卫星的一项关键任务。为了支持太空应用,EO 卫星拍摄照片的时间和空间分辨率一直在提高,但这也增加了每颗卫星生成的数据量。我们观察到,未来的 EO 卫星将生成大量数据,由于太空和地球之间的通信容量有限,这些数据无法传输到地球。我们表明,传统的数据缩减技术如压缩 [130] 和早期丢弃 [54] 并不能解决这个问题,直接增强当今基于射频的天地通信基础设施 [136, 153] 也不能解决这个问题。我们探索了一种非传统的解决方案 —— 将原本在地面进行的计算转移到太空。这减轻了将数据传输到地球的需要。我们分析了十种非纵向 RGB 和高光谱图像处理地球观测应用的计算和功率要求,发现这些要求无法由当今主导 EO 任务的小型卫星满足。我们支持空间微数据中心 - 大型计算卫星,其主要任务是支持 EO 数据的空间计算。我们表明,一个 4KW 空间微数据中心可以支持大多数应用程序的计算需求,尤其是与早期丢弃结合使用时。然而,我们确实发现 EO 卫星和空间微数据中心之间的通信成为一个瓶颈。我们提出了三种空间微数据中心通信协同设计策略 - 基于 𝑘 − 𝑙𝑖𝑠𝑡 的网络拓扑、微数据中心拆分和将空间微数据中心移至地球静止轨道 - 这些策略可以缓解瓶颈并实现有效利用空间微数据中心。