量子计算正处于资源有限的时代。当前的硬件缺乏高保真门、长相干时间以及执行有意义计算所需的计算单元数量。现代量子设备通常使用二进制系统,其中每个量子位都存在于 | 0 ⟩ 和 | 1 ⟩ 状态的叠加中。然而,通过以不同的方式操纵系统,通常可以访问同一物理单元中的 | 2 ⟩ 甚至 | 3 ⟩ 状态。在这项工作中,我们考虑通过压缩方案自动将两个量子位编码为一个四状态量子。我们使用量子最优控制来设计高效的概念验证门,完全复制这些编码量子位上的标准量子位计算。我们扩展了量子比特编译方案,以便在由量子比特和量子门组成的任意混合基数系统上高效路由量子比特,从而减少通信并最大限度地减少由较长持续时间的量子门引入的额外电路执行时间。结合这些编译策略,我们引入了几种方法来寻找有益的压缩,将计算和通信导致的电路错误减少高达 50%。这些方法可以将有限的近期机器上可用的计算空间增加高达 2 倍,同时保持电路保真度。
中国“墨子号”卫星建立了首个洲际量子加密服务。研究人员通过在欧洲和中国之间建立安全视频会议测试了该系统。这个过程很简单。量子加密依靠所谓的一次性密码本来保证隐私。这是一组随机数(密钥),双方可以使用它来编码和解码消息。一次性密码本的问题在于确保只有选定的发送者和接收者拥有它们。这个问题可以通过使用光子等量子粒子发送密钥来解决,因为总是可以判断量子粒子是否之前被观察到。如果已经观察到,则放弃该密钥并发送另一个密钥,直到双方都确定他们拥有未被观察到的一次性密码本。量子密钥分发是量子加密的核心。双方拥有密钥(即一次性密码本)后,他们可以通过普通经典信道进行绝对安全的通信。墨子号卫星只是从轨道上分发这个密钥。由于卫星位于两极上方的太阳同步轨道上,因此它每天大致在相同的当地时间经过地球表面的各个角落。假设当卫星经过位于中国河北省北部兴隆的中国地面站时,它会使用成熟的协议将一次性密码本以单光子编码发送到地面。当地球在卫星下方旋转,奥地利格拉茨的地面站进入视野时,墨子号会将相同的一次性密码本发送到那里的接收器。这样,两个地点就拥有了相同的密钥,使它们能够通过传统链路启动完全安全的通信。实验甚至更进一步。如果目标是在北京的中国科学院和维也纳的奥地利科学院之间举行视频会议,那么密钥必须安全地分发到这两个地点。为此,研究小组使用基于地面的光纤量子通信。这样建立的视频链路由高级加密标准 (AES) 保护,该标准每秒通过 128 位种子代码刷新一次。 9 月,他们举行了一场开创性的视频会议,会议持续了 75 分钟,总数据传输量约为 2 GB。“我们展示了地球上多个地点之间的洲际量子通信,最大间隔为 7,600 公里,”由维也纳大学的 Anton Zeilinger 和中国合肥中国科学技术大学的潘建伟领导的团队表示。该系统存在一些潜在的弱点,未来有待改进。也许最重要的是,在连接两个地面站的时间内,卫星被认为是安全的。这很可能是真的——谁能入侵一颗在轨道上运行的卫星?但是,这种安全性无法得到保证。然而,研究团队表示,未来可以通过端到端量子中继来解决这一问题。各国政府、军事运营商和商业企业都渴望拥有类似的安全能力。1
在用实验数据检验理论时,贝叶斯方法为我们提供了一种根据新数据修正理论预期的合理方法。以抛硬币这个简单而熟悉的例子为例,我们首先相信硬币是公平的。如果我们抛硬币十次,九次都是正面,我们对公平的信念将动摇但不会被摧毁:九次正面仍然可能是偶然产生的。如果正面的情况持续下去,我们将很难坚持相信硬币是公平的。根据新数据修正我们的信念是科学方法的一个基本组成部分,这一点在 20 世纪 90 年代席卷社区的蒙蒂霍尔问题中得到了引人注目的体现。贝叶斯理论通常用于测试药物的功效,其中人们从“零假设”开始,即被测试的药物并不比安慰剂更有效。如果