Queiroz,Carlos Magno Medeiros,1971 - 单通道方法过滤受面部肌电图严重污染的脑电信号 [电子资源] / Carlos Magno Medeiros Queiroz。 - 2022 年。主管:Adriano de Oliveira Andrade。论文(博士) - 乌贝兰迪亚联邦大学,电气工程研究生课程。访问方式:互联网。可从以下网址获取:http://doi.org/10.14393/ufu.te.2023.8032 包括参考书目。包括插图。 1. 电气工程。 I. 安德拉德,阿德里亚诺·德奥利维拉,1975-,(东方)。二.乌贝兰迪亚联邦大学。电气工程研究生课程。三标题。 CDU:621.3 André Carlos Francisco 图书管理员 - CRB-6/3408
我们经常在媒体上听到有关新的太空任务的消息。它涉及距离、行进速度、仪器、研究目标和时间范围。但获取的数据如何从太空探测器传输到地球通常没有被提及。例如,几乎所有任务的共同特征——美国航天局NASA的深空网络——几乎不为公众所知。本书对此进行了较为详细的介绍,并描述了卫星、空间站、太空探测器和着陆器如何与地球通信。选定的卫星系统和太空任务作为说明性示例。最后,读者将了解星际通信需要考虑哪些因素,如何以现实的方式处理 SETI 主题,以及激光束和量子在太空通信中发挥什么作用。从内容上看:
如果一个光场恰好包含 k 个光子,则它处于 k -光子态。由于其高度量子化的特性,光子态在量子通信、计算、计量和模拟方面有着广阔的应用前景。最近,人们对各种光子态的产生和操纵的兴趣日益浓厚。控制工程领域的一个新的重要问题是:如何分析和合成由光子态驱动的量子系统以实现预定的控制性能?在本综述中,我们引入了单光子态,并展示了量子线性系统如何处理单光子输入,以及如何使用线性相干反馈网络来塑造单光子的时间脉冲。我们还介绍了一种单光子滤波器。(本综述的扩展版本可在 arXiv:1902.10961 找到。)
图。4:主题1(S1)和股直肌的EMG预处理示例:(a)原始EMG,(b)DC去除,(c)频谱信号,(d)Butterworth高通滤波,(e)Butterworth低通滤波,(f)
非线性过滤模型是一种设计安全流密码的古老且易于理解的方法。几十年来,大量的研究表明如何攻击基于此模型的流密码,并确定了用作过滤函数的布尔函数所需的安全属性,以抵御此类攻击。这导致了构造布尔函数的问题,这些函数既要提供足够的安全性,又要实现高效。不幸的是,在过去的二十年里,文献中没有出现解决这个问题的好方法。缺乏好的解决方案实际上导致非线性过滤模型或多或少变得过时。这对密码设计工具包来说是一个巨大的损失,因为非线性过滤模型的巨大优势在于,除了它的简单性和为面向硬件的流密码提供低成本解决方案的能力之外,还在于积累了有关抽头位置和过滤函数的安全要求的知识,当满足所有标准时,这让人对其安全性充满信心。在本文中,我们构造了奇数个变量(n≥5)的平衡函数,这些函数具有以下可证明的性质:线性偏差等于2−⌊n/2⌋−1,代数次数等于2⌊log2⌊n/2⌋⌋,代数免疫度至少为⌈(n−1)/4⌉,快速代数免疫度至少为1+⌈(n−1)/4⌉,并且这些函数可以使用O(n)NAND门实现。这些函数是通过对著名的Maiorana-McFarland弯曲函数类进行简单修改而获得的。由于实现效率高,对于任何目标安全级别,我们都可以构造高效的可实现函数,以提供对快速代数和快速相关攻击所需的抵抗级别。先前已知的可有效实现的函数具有过大的线性偏差,即使变量数量很大,它们也不合适。通过适当选择 n 和线性反馈移位寄存器的长度 L,我们表明有可能获得可证明 κ 位安全的流密码示例,这些密码对于各种 κ 值都可以抵御众所周知的攻击。我们为 κ = 80、128、160、192、224 和 256 提供了具体建议,使用长度为 163、257、331、389、449、521 的 LFSR 和针对 75、119、143、175、203 和 231 个变量的过滤函数。对于 80 位、128 位和 256 位安全级别,相应流密码的电路分别需要大约 1743.5、2771.5 和 5607.5 个 NAND 门。对于 80 位和 128 位安全级别,门数估计值与著名密码 Trivium 和 Grain-128a 相当,而对于 256 位安全级别,我们不知道任何其他流密码设计具有如此低的门数。关键词:布尔函数、流密码、非线性、代数免疫、高效实现。
非线性过滤模型是一种设计安全流密码的古老且易于理解的方法。几十年来,大量的研究表明如何攻击基于此模型的流密码,并确定了用作过滤函数的布尔函数所需的安全属性,以抵御此类攻击。这导致了构造布尔函数的问题,这些函数既要提供足够的安全性,又要实现高效。不幸的是,在过去的二十年里,文献中没有出现解决这个问题的好方法。缺乏好的解决方案实际上导致非线性过滤模型或多或少变得过时。这对密码设计工具包来说是一个巨大的损失,因为非线性过滤模型的巨大优势在于,除了它的简单性和为面向硬件的流密码提供低成本解决方案的能力之外,还在于积累了有关抽头位置和过滤函数的安全要求的知识,当满足所有标准时,这让人对其安全性充满信心。在本文中,我们构造了奇数个变量(n≥5)的平衡函数,这些函数具有以下可证明的性质:线性偏差等于2−⌊n/2⌋−1,代数次数等于2⌊log2⌊n/2⌋⌋,代数免疫度至少为⌈(n−1)/4⌉,快速代数免疫度至少为1+⌈(n−1)/4⌉,并且这些函数可以使用O(n)NAND门实现。这些函数是通过对著名的Maiorana-McFarland弯曲函数类进行简单修改而获得的。由于实现效率高,对于任何目标安全级别,我们都可以构造高效的可实现函数,以提供对快速代数和快速相关攻击所需的抵抗级别。先前已知的可有效实现的函数具有过大的线性偏差,即使变量数量很大,它们也不合适。通过适当选择 n 和线性反馈移位寄存器的长度 L,我们表明有可能获得可证明 κ 位安全的流密码示例,这些密码对于各种 κ 值都可以抵御众所周知的攻击。我们为 κ = 80、128、160、192、224 和 256 提供了具体建议,使用长度为 163、257、331、389、449、521 的 LFSR 和针对 75、119、143、175、203 和 231 个变量的过滤函数。对于 80 位、128 位和 256 位安全级别,相应流密码的电路分别需要大约 1743.5、2771.5 和 5607.5 个 NAND 门。对于 80 位和 128 位安全级别,门数估计值与著名密码 Trivium 和 Grain-128a 相当,而对于 256 位安全级别,我们不知道任何其他流密码设计具有如此低的门数。关键词:布尔函数、流密码、非线性、代数免疫、高效实现。
脑医学图像融合在构建当代图像以增强相互和重复信息以用于诊断目的方面起着重要作用。提出了一种对脑图像使用基于核的图像滤波的新方法。首先,使用双边滤波器生成源图像的高频分量。其次,估计第一幅图像的强度分量。第三,对几个滤波器采用侧窗滤波,包括引导滤波器、梯度引导滤波器和加权引导滤波器。从而最小化第一幅图像的强度分量与第二幅图像的低通滤波器之间的差异。最后,基于三个评估指标对融合结果进行评估,包括标准差(STD)、特征互信息(FMI)、平均梯度(AG)。基于该算法的融合图像包含更多信息、更多细节和更清晰的边缘,有助于更好地诊断。因此,我们基于融合图像的方法能够很好地找到目标体积的位置和状态,从而远离健康部位并确保患者的健康。
量子系统对外部场极为敏感,是感测微弱信号的理想选择。量子传感器的有希望的候选者包括金刚石或 SiC(碳化硅)中的缺陷、基于 SQUID(超导量子干涉装置)的传感器、原子传感器等(参见参考文献 1)。这些系统也是构建量子比特(量子位)的候选者,量子比特是量子计算机中信息处理的基本组件。已经开发出各种传感技术,以使用量子位作为传感平台来估计信号的幅度或相位。例如,拉姆齐干涉法 2 允许估计磁场幅度,其灵敏度受量子位自由演化失相时间的限制,可通过最佳控制方法增强灵敏度。3
非线性滤波器用于滤除 MR 数据中的伪影和噪声。信号保存和降噪之间的平衡使 MR 数据恢复成为一项复杂的任务。应用非线性滤波器(例如中值和非局部均值滤波器 (NLM) 滤波器)将右偏 Rician 分布转换为非偏高斯分布。NLM 滤波器比双边和中值滤波器提供更好的结果。由于应用非线性滤波器后分布不偏斜,因此应用了标准线性滤波器(例如高斯滤波器和维纳滤波器)并得出结果。NLM 和高斯滤波器的线性组合给出了令人满意的结果。对 40 张临床图像进行了实验,发现 NLM 滤波器具有最佳效果。用于比较的图像质量指标是峰值信噪比 (PSNR)、均方根误差 (RMSE)、结构相似性指数 (SSIM) 和熵。实验是在 MATLAB 2020a 上进行的。