背景:人工智能有可能革新目前用于检测自杀迫在眉睫的风险的做法,并解决传统评估方法的缺陷。目标:在本文中,我们试图根据澳大利亚 2 家远程医疗咨询服务机构拨打的大量(n=281)电话,将短片段(40 毫秒)的语音根据自杀低风险和迫在眉睫的风险自动分类。方法:本研究纳入了来自澳大利亚 On The Line(n=266,94.7%)和堪培拉 000 紧急服务(n=15,5.3%)的共 281 条帮助热线电话录音。当呼叫者确认意图、计划和手段的可用性时,对迫在眉睫的自杀风险进行编码;风险级别由响应咨询师评估,并由临床研究团队使用哥伦比亚自杀严重程度评定量表(=5/6)重新评估。低自杀风险在没有意图、计划和手段的情况下通过哥伦比亚自杀严重程度量表评分(=1/2)进行编码。预处理包括语音信号的标准化和预强调,而语音生物特征则使用统计语言 r 提取。使用套索回归确定候选预测因子。使用带有样条函数以解释非线性的广义加性混合效应模型将每种语音生物标记物评估为自杀风险的预测因子。最后,使用逐个分量的梯度增强模型根据预编码的自杀风险评级对每通通话记录进行分类。结果:总共将 77 个迫在眉睫的风险呼叫与 204 个低风险呼叫进行了比较。此外,从每个语音帧中提取了 36 个语音生物标记物。呼叫者性别是一个显着的调节因素(β =–.84,95% CI –0.85,-0.84;t =6.59,P <.001)。候选生物标记物减少到 11 个主要标记物,并为男性和女性开发了不同的模型。使用留一交叉验证,确保没有一个呼叫者的语音帧同时出现在训练和测试数据集中,精度或召回曲线下面积达到 0.985(95% CI 0.97, 1.0)。gamboost 分类模型正确分类了 469,332/470,032(99.85%)个语音帧。结论:本研究展示了在生态有效环境中对即将发生的自杀风险进行客观、有效和经济的评估,并可能应用于实时评估和响应。试验注册:澳大利亚新西兰临床试验注册中心 ACTRN12622000486729;https://www.anzctr.org.au/ACTRN12622000486729.aspx