合作性异构多智能体任务要求智能体以灵活和互补的方式行事,以最大程度地利用其多样化能力。针对这一挑战的基于学习的解决方案涵盖两个端点之间的范围:i)共享参数方法,通过为每个智能体分配一个 ID,在单一架构内编码多样化行为,这种方法样本效率高,但行为多样性有限;ii)独立方法,为每个智能体学习单独的策略,以样本和参数效率为代价实现更大的多样性。先前针对异构多智能体团队学习的研究已经探索了这一范围的中间地带,即为不同类别的智能体学习共享参数或独立策略,从而在多样性和效率之间实现折衷。然而,这些方法仍然没有推理智能体能力对行为的影响,因此不能推广到未知的智能体或团队组成。受到迁移学习和元强化学习最新研究的启发,并在基于特征的任务分配的先前研究的基础上,我们提出了能力感知共享超网络 (CASH),这是一种用于异构协调的新型软权重共享架构,它使用超网络明确推理持续代理能力和局部观察。直观地说,CASH 允许团队学习共享的决策策略(由共享编码器捕获),这些策略可以通过共享超网络根据团队的个人和集体能力轻松调整。我们在两个异构协调任务和三个标准学习范式(模仿学习、基于价值和策略梯度强化学习)中进行了详细的实验,展示了我们的设计如何与底层学习范式无关。结果表明,CASH 产生了适当多样化的行为,在训练和零样本泛化期间的任务性能和样本效率方面始终优于基线架构。值得注意的是,CASH 仅使用基线使用的 20% 到 40% 的可学习参数就实现了这些改进。我们所有的代码都可以在 https://github.com/kfu02/JaxMARL 上找到。
Magellanmapper是一款软件套件,旨在以内存有效的方式进行大型,3D脑成像数据集的视觉检查和端到端自动处理。迅速增长的大容量,高分辨率数据集需要在宏观和微观水平上可视化原始数据,以评估数据和自动化处理的质量,以量化数据的方式,以对大量样品进行比较。为了促进这些分析,MagellanMapper提供了用于手动检查的图形用户界面,也提供了用于自动图像处理的命令行界面。在宏观级别上,图形接口允许研究人员在每个维度中同时查看完整的体积图像并注释解剖标签位置。在显微镜水平上,研究人员可以在高分辨率下检查感兴趣的区域,以构建细胞位置(例如核位置)的地面真相数据。使用命令行界面,研究人员可以在体积图像上自动化细胞检测,改进解剖图集标签以适合基本的组织学,将这些地图集注册以采样图像,并通过解剖区域进行统计分析。MagellanMapper利用建立的开源计算机视觉库,本身就是开源,可以免费下载和扩展。