图 2. 在小型线性离子晶体中使用 o 、 m 和 g 量子位的三种模式(见 § 2.3.1 - 2.3.3)。每行的面板构成一个不同的模式。模式根据用于{状态准备(§ 3.2)、门(§ 3.3)、存储}的量子位类型指定。每个圆圈代表一个离子,每个离子体现一种特定类型的一个量子位。在这三种情况下,冷却都是在 g 型离子中完成的,读出(§ 3.2)在 o 型流形中完成(另见图 1)。实心箭头表示激光束,波浪箭头表示自发散射光子,虚线箭头表示条件跃迁。在可能的情况下,在存储过程中显示了 g 型离子的激光冷却。类型转换表示 o 、 m 和 g 量子比特之间的转换(§ 3.1),其中开放通道转换伴随着自发发射的光子。读取启用是指转换为 o 编码,以便后续的激光询问产生状态相关的荧光(§ 3.2)。读取启用可以通过顶部和底部模式下的开放通道进行,在这种情况下,只有当量子比特投射到被光泵浦的特定状态时,才会出现自发发射的光子。
摘要 - 优化人工神经网络的计算效率对于资源受限的平台(例如自主驾驶系统)至关重要。为了应对这一挑战,我们提出了一个轻巧的上下文感知网络(LCNET),该网络加速了语义细分,同时在本文中保持了推理速度和细分精度之间的有利权衡。提出的LCNET引入了部分通道转换(PCT)策略,以最大程度地减少基本单元的计算潜伏期和硬件要求。在PCT块中,三个分支的上下文聚合(TCA)模块扩展了功能接收场,从而捕获多尺度上下文信息。此外,双重注意引导的解码器(DD)恢复了空间细节并增强了像素预测的认可。在三个基准上进行的广泛实验证明了拟议的LCNET模型的有效性和效率。值得注意的是,一个较小的LCNET 3_7仅获得了73.8%MIOU,只有51万个参数,分别使用单个RTX 3090 GPU和Jetson Xavier NX,其令人印象深刻的推理速度约为142.5 fps和〜9 fps。更准确的LCNET 3_11版本可以在约117 fps的推理速度下以相同的分辨率达到75.8%MIOU,在城市景观上约为117 fps推理速度。可以在较小的图像分辨率下实现更快的推理速度。LCNET在移动应用程序方案 - iOS的计算效率和预测能力之间取得了巨大的平衡。代码可在https://github.com/lztjy/lcnet上找到。
摘要。目的。信息传输速率 (ITR) 或有效比特率是一种流行且广泛使用的信息测量指标,尤其适用于基于 SSVEP 的脑机 (BCI) 接口。通过将速度和准确性结合为单值参数,该指标有助于评估和比较不同 BCI 社区中的各种目标识别算法。为了计算 ITR,通常假设输入分布均匀,并且通道模型过于简单,该模型无记忆、静止且本质上对称,字母大小离散。因此,为了准确描述性能并启发未来 BCI 设计的端到端设计,需要更彻底地检查和定义 ITR。方法。我们将视网膜膝状体视觉通路承载的共生通信介质建模为离散无记忆通道,并使用修改后的容量表达式重新定义 ITR。我们利用有向图的结果来表征由于新定义导致的转换统计不对称与 ITR 增益之间的关系,从而得出数据速率性能的潜在界限。主要结果。在两个著名的 SSVEP 数据集上,我们比较了两种尖端目标识别方法。结果表明,诱导的 DM 通道不对称对实际感知的 ITR 的影响大于输入分布的变化。此外,证明了新定义下的 ITR 增益与通道转换统计的不对称呈反比。进一步表明,单独的输入定制可以带来感知的 ITR 性能改进。最后,提出了一种算法来寻找二分类的容量,并进一步讨论了通过集成技术将这些结果扩展到多类情况。意义。我们期望我们的研究结果将有助于表征高度动态的 BCI 通道容量、性能阈值和改进的 BCI 刺激设计,以实现人脑与计算机系统之间更紧密的共生,同时确保有效利用底层通信资源。