在过去的几十年中迅速开发了用于解决最佳控制问题的多种拍摄方法,并被广泛认为是加快优化过程的有希望的方向。在这里,我们根据顺序二次编程(SQP)方法提出和分析了一种新的多重拍摄算法,该方法适用于由大规模时间依赖性的部分di ff构成方程(PDES)控制的最佳控制问题。我们研究了KKT矩阵的结构,并通过预处理的共轭梯度算法求解大规模的KKT系统。提出了一个简化的块Schur补体预处理程序,该预处理允许在时间域中进行该方法并行化。首先对所提出的算法进行了验证,该算法是针对由Nagumo方程约束的最佳控制问题的验证。结果表明,对于多种射击方法,可以通过适当的起始猜测和匹配条件的缩放来实现相当大的加速度。我们进一步将提出的算法应用于由Navier-Stokes方程控制的二维速度跟踪问题。,我们发现算法的加速度最高为12,而最多可在50张射击窗口中进行单次射击。我们还将结果与较早的工作进行了比较,该结果使用增强的拉格朗日算法而不是SQP,在大多数情况下显示了SQP方法的更好性能。