YK 1265 是一款 60 kW 带外腔的电视速调管,已在电视发射机中验证了数年,并已在连续波应用中验证了上百次。由于其紧凑的设计,电磁聚焦所需的功率仅为 1 kW 左右。收集器适用于蒸汽、蒸汽冷凝或水冷却。该管可与固定频率腔一起使用(仅可调约490-510 MHz),专为 500 MHz 应用而设计,或与标准腔一起使用。这些腔体的优点是可以使用数字频率指示器进行连续可调,以便进行粗调,从而为连续波操作提供 470 Mhz 至 810 MHz 的频率范围。输出耦合可在很宽的范围内调节,以优化所有应用。有了改进的腔体、漂移管和插座空气冷却系统,速调管不需要单独的漂移管 5 管。所需空气约为。3.2 m /min,压降为 5.5 mbar 或 550 Pa。可实现 65 kW 的饱和输出功率,饱和效率为 45 k。增益大于 40 dB。束流电压为 25.5 kV,束流为 5.7 A。方便的备件储存和快速的库存交货是使用标准 TV 速调管及其标准配件进行连续波操作的两个优点。YK 1265 拥有经过充分验证的技术和长寿命预期。由于 YK 1265 的设计没有改变,因此监测体电流将有助于简化调谐过程。
过去几年,已提出了几种显著提高 SLAC 束流能量的方案。其中两个方案,即使用超导加速段 1 和使束流再循环通过现有加速器 2,在经过大量研究后,由于技术和经济原因已被放弃。目前,逐步提高束流能量的方法是 SLAC 速调管组开发和安装 30 和 40 MW 速调管。但很明显,为了使现有机器的能量增加一倍左右,必须将加速器完全改装为产生约 100 MW 的速调管。虽然这种方法并非不可想象,3 但实现这种速调管及其驱动所需的调制器需要进一步的开发和高额的初始资本投资。
另一方面,在 IOT 中,RF 输入信号施加在阴极和栅极之间,栅极位于阴极附近且在阴极前方(见图1)。因此,电子束在枪区域本身内进行密度调制。向栅极施加相对于阴极电位约负 80 伏的直流偏置电压 (V G ),以便在没有 RF 驱动的情况下,约 500 mA 的静态电流流动。阴极保持在约 -30 kV 的负束电位,因此密度调制的束流通过接地阳极中的孔径加速到输出部分。在这里,功率通过传统的速调管输出系统提取,但使用双调谐腔系统来提供欧洲和世界许多其他地区超高频电视传输所需的 8 MHz 信道带宽。最后,电子束在传统设计的铜收集器中消散 - 根据所涉及的功率水平,可以是空气冷却的,也可以是液体冷却的。
毫米波和太赫兹频率的真空电子器件在现代高数据速率和宽带通信系统、高分辨率检测和成像、医学诊断、磁约束核聚变等领域发挥着重要作用。由于电子在真空介质中运动速度快,与现有的其他辐射源(如固态器件)相比,它们具有高功率、高效率以及紧凑性的优势。我们设立“高频真空电子器件”专刊的目的是加强有关这些器件的理论、设计、仿真、工艺和开发的研究信息的交流,促进它们的应用,并吸引年轻的研究人员和工程师进入这个重要领域,这是现代电子科学和信息技术的重要组成部分。真空电子射频功率器件有很多种,包括线束器件、交叉场器件和快波器件。在高达太赫兹的高频范围内,速调管、行波管、波谷振荡管和回旋管因其高功率或宽瞬时或调谐带宽而受到广泛研究。为了在毫米波和太赫兹频率下获得高质量的性能,过去十年中出现了新的技术和工艺,包括使用 MEMS 和 3D 打印的微加工、用于窗口和衰减器的新型金刚石相关材料。同时,人们还研究了新的慢波结构和谐振结构,如超结构、高阶模式操作和片状电子束,用于获得高功率;杂散抑制;并降低制造难度,特别是在高频范围内。阴极、电子枪、I/O 结构、磁聚焦系统和收集器等器件零部件的革命性技术在高频真空电子器件的发展中发挥了关键作用。本期特刊包含 15 篇论文,涵盖了广泛的主题,涉及频率范围高达 340 GHz 的高频真空设备的设计、仿真、制造和测试,以及包括回旋管、TWT 和 EIK 在内的设备,以及波束形成和限制阴极、慢波结构和模式转换器等。高频回旋管是动态核极化核磁共振 (DNP-NMR) 应用的核心设备,可显着提高医疗系统和科学研究中高场 NMR 的灵敏度和分辨率。北京大学论文[1]《330 GHz/500 MHz DNP-NMR应用的线性偏振高纯度高斯光束整形与耦合》提出了用于330 GHz/500 MHz DNP-NMR系统的波纹TE11-HE11模式转换器和三端口定向耦合器的设计与计算。模式转换器的输出模式呈现出高度