摘要在无车道的交通中,车辆可以选择任何任意的横向位置。这使车辆群可以在数量上进行组合,不仅在纵向上而且侧向进行较小的空间缝隙,可以将车辆组成较小。车辆植入可以实现多种目的,例如增加道路容量,通过减少空气动力阻力和抑制冲击波来节省能源。在本文中,我们开发了一个控制框架,用于在无车道交通中对车辆羊群进行建模。拟议的控制算法考虑了两种类型的代理:代表潜在羊群的代理和代表具有集体目标的虚拟领导者的G代理(例如,在未来的交通拥堵情况下放慢速度)。我们的算法基于用于羊群居中和避免碰撞的能量功能,用于速度匹配的共识算法以及虚拟领导者发挥的导航反馈。虚拟领导者的路径应在上层控制器中定义。此外,还实施了用于动态道路边界控制的反馈算法。我们以非常有希望的结果模拟了所提出的方法。我们表明,车辆群在几秒钟内有效地形成,速度已成功排列,并且车辆安排在不同的情况下保持稳定。此外,外侧和纵向羊群的扩展随着不同的能量功能和不断变化的道路边界而变化,车辆羊群遵循虚拟领导者的轨迹。最重要的是,在扰动的情况下,车辆群保持稳定,由于车辆横向位置的略有变化,诱导的冲击会有效抑制。
摘要 交通运输正在被新技术迅速改变,例如智能交通系统(包括智能卡、车载诊断和信息系统以及更智能的高速公路、公交、汽车、物流系统和其他信息系统)。随着未来二十年新技术的引入,选择范围及其影响将继续扩大,并可能在许多方面改变交通运输系统。例如,可能会引入电动、氢能或混合电动-石油汽车,这将大大改变车队的排放和燃料特性,并可能对系统运营和财务构成挑战。智能卡技术可以大大提高各种道路使用、停车和公交票价定价方案的可行性和便利性。监控和信息系统可以使旅行者安排行程并选择路线以避开拥堵,从而减少拥堵。先进的交通管理系统可以显着增加道路容量,同时提高安全性并尊重行人舒适度等其他目标。从长远来看,自动化可以使安全性、容量和便利性得到大幅提升。然而,这些技术是否以及在多大程度上成为交通系统的重要组成部分,不仅取决于技术发展,还取决于公共和私人对这些技术的可取性和实用性的决定。新技术的全系统应用和高市场渗透率可能与目前正在进行的零碎应用相比,具有截然不同的收益和成本。简介 从历史上看,交通运输一直是一个技术密集型行业,多年来,科学技术的进步为交通系统带来了许多改进。在过去的几十年里,新技术已被应用于管理各种问题,如交通拥堵、空气污染、燃料使用和事故风险,无论是客运还是货运。因此,用户受益于:� 降低旅行成本� 尽管运输量大幅增长,但旅行和运输速度增加或保持稳定� 低成本的当日、次日和准时交付� 安全性、保障性和可靠性提高� 更加舒适和方便� 更高的能源效率(尽管大部分收益被用于生产更大、装备更精良的车辆,而不是减少燃料使用)� 减少对环境的影响,特别是以空气污染和噪音排放的形式� 每辆车的容量增加。