前所未有的全球气候变化严重影响了我们的环境,并对农业生产力造成了严重威胁(Shahzad等,2021; Cinner等,2022; Ozdemir,2022)。这导致了植物病原体和害虫的新种族的出现,强调的非生物压力,耗尽的水资源和缩水的土地,对全球不断增长的全球人群的粮食安全构成了严重的挑战(IPCC第六次评估报告,2022年)。1960年代中期绿色革命所提供的优势也正在消失,导致脆弱的食品系统(Davis等,2019; John and Babu 2021)。今天的农业面临着遗传侵蚀加剧的新挑战,遗传侵蚀是商业作物的狭窄遗传基础和环境退化。迫切需要使农业更具弹性和可持续性,同时仍在继续发展高产量,抗压力和气候智能的农作物品种。基因组学和基因编辑技术的进步为作物的遗传改善提供了巨大的机会和潜在解决方案(GAO 2021)。通过基因组学和基因组编辑方法开放的大量新型途径归因于有价值工具的演变,例如下一代测序(NGS)方法,即ART基因组型阵列,基因组映射和基因组选择技术,这些技术帮助探索了作物繁殖过程。同样,新的基因编辑平台也允许对农艺上重要的基因进行精确的编辑,从而生成具有所需特征的新品种(Zhang 2020; Ahmad 2023)。这些技术的部署奠定了现代育种的基础,以有效地将隐藏在农作物野生亲戚中的未充分利用的多样性引导到精英基因池中(Sehgal等,2015; 2017; 2017; 2020; 2020; Singh等,2018; Singh等,2021)。
全球基因银行具有表型和遗传新颖性,可用于提高产量,作物适应性和农生动态性(Tanksley and McCouch,1997),同时缓冲作物遗传侵蚀(Khoury等,2021年)。然而,必须授权基因银行利用的新策略,以满足日益增长的全球粮食需求(McCouch,2013; Bohra等,2021),其作物替代方案具有适合气候变化的替代品,对环境和生物多样性的可持续性,以及社区的生物多样性(Scherer等人,2020年)。因此,为了在Genebank采矿中填补这一差距,该研究主题通过利用高通量表型和作物野生亲戚(CWR)和Landraces的基因分型来汇总了能够加快作物改进过程的最新发展(Singh等,2022)。如下一部分所讨论的那样,累积的作品创新了基因班克表征,利用和等位基因部署的不同步骤,包括种质鉴定,保护,保护,繁殖前筛查基因上多样性和相关标记物以及侵入性育种。
有利的等位基因来自杂交不切实际或不可能的种群;它甚至允许合理设计新的等位基因。1 这可以在一代中实现,而不会稀释遗传价值。此外,目前的家养育种池通常利用该物种中可用的一小部分遗传变异。野生亲属是未来农业的关键等位基因来源(例如,面对不断变化的气候条件),重新测序项目正在确定等位基因差异的功能。现在可以通过等位基因替换或使用基因编辑重新创建突变将有益的“野生”等位基因直接整合到精英种质中。这种遗传“再野化”应用可以帮助减少遗传侵蚀并保护养殖和驯养动物的遗传多样性。2 应该指出的是,在畜群层面,家养物种健康和福利的普遍改善可能伴随着家畜种群遗传多样性的增加。3
气候变化是被认为可以加快荒漠化的众多事物之一。这是由于将温室气体排放到大气中引起的,这会影响我们的环境。它也是当今最大的环境,社会经济和政治问题之一。本文的主要目的是分析荒漠化的原因和后果以及减少生物多样性丧失的可能解决方案。荒漠化的主要原因包括:气候因素和人类活动,例如过度开发和不适当的农业实践,森林砍伐,人口增长高,土地和权利不安全。荒漠化是指构成干旱环境的生存成分的植物,动物和微生物的遗传侵蚀。大多数植物和动物以及适应有利状况的土壤微生物,由于荒漠化而很可能灭绝。即使某些物种和基因在较干燥的环境中进行了适应,由于这种情况,物种灭绝的速率也更高。森林,野生动植物生态系统和总生物多样性的减少显然处于严重状态。因此,必须通过启动收入多样化以减少对旱地的压力来支持农村人民,因此环境管理方法与荒漠化的抗衡是相互依存的。
摘要:印度尼西亚是一个生物多样性热点,具有高水平的全球重要食品作物及其作物野生亲戚以及本地改编的品种。这种丰富的多样性对于印度尼西亚的粮食和营养安全至关重要,同时为小规模农民(男性和女人)和传统社区的生计策略提供了支持,他们充当了这种遗传遗产的监护人。然而,由于农作物均匀性的增加以及对当地品种的使用和需求减少,印度尼西亚用于食品和农业的植物遗传资源正在遭受遗传侵蚀。食物偏好和消费模式的变化使该物种陷入农业忽视,仅出于文化原因,一些小农培养该物种。这些问题因土地使用变化和气候变化而加剧。认识到该地区保存农业生物多样性的必要性,以确保对印度尼西亚三个目标省份的芋头,山药,丁香和肉豆蔻的保护状况,保护和可持续使用的地位以及可持续使用。混合方法分析用于记录现有的保护工作,以及目前已知的这些目标作物的保护状况,无论是在现场集合还是在该领域中,以识别独特的生物多样性,以及如何更好地保护和使用这种对后代的独特遗传多样性的障碍和知识差距。
作物野生亲戚(CWRS)与驯养的作物(农业园艺,药物和芳香,观赏性和林业物种)表现出密切的关系,并形成了农作物基因库的一部分,具有基因交换的潜力。大量的CWR是潜在的捐助者,但受到驯养作物的关注少。cwrs也遭受了遗传侵蚀,导致遗传多样性严重丧失(Maxted等,2006; Von Wettberg等,2020)。驱动遗传多样性损失的因素已分为对进化力作用的远程驱动因素和近端驱动因素:突变,迁移/基因流,遗传漂移和选择(Khoury等,2022)。在此研究主题中,Trainin等人。从解剖学的角度记录了参与选择非色的光合作用性状的进化力,与商业杏仁相比(P. Dulcis(Mill。D. A. Webb)。P.Arabica的茎有利于STEM光合作用,以通过多种策略获得额外的碳增益。Higher stem photosynthesis in P. arabica than in P. dulcis is attributed to selective anatomical features such as the presence of a high density of sunken stomata in their stems, a chloroplast-rich mesophyll-like parenchymatous cell layer, higher chlorophyll content, better chlorophyll fl uorescence and quenching parameters, and its ability to ef fi ciently regulate water loss at温度升高。
摘要:小麦是世界上最重要的主食作物之一,其遗传改良对于满足不断增长的人口的全球需求至关重要。然而,气候变化加剧的环境压力和耕地面积的不断恶化使得满足这一需求变得非常困难。鉴于此,小麦对非生物胁迫的耐受性已成为遗传改良的一个关键目标,这是一种在不增加耕地面积的情况下确保高产的有效策略。与现代农业相关的遗传侵蚀,即高产小麦品种是高选择压力的产物,这降低了整体遗传多样性,包括可能有利于适应不利环境条件的基因的等位基因多样性。这使得传统育种成为一种效率较低或速度较慢的产生新抗逆小麦品种的方法。无论是挖掘不适应的大型种质库的多样性,还是产生新的多样性,都是主流方法。基因工程的出现为创造新的植物变异提供了可能性,其应用为传统育种提供了强有力的补充。转基因和基因组编辑等基因工程策略为改善栽培品种具有重要农学意义的环境耐受性提供了机会。至于小麦,全球有数个实验室已成功培育出具有增强的非生物胁迫耐受性的转基因小麦品系,而且最近,用于小麦基因组内靶向变异的 CRISPR/Cas9 工具也取得了显著改进。鉴于此,本综述旨在提供基因工程应用的成功案例,以改善小麦对干旱、盐分和极端温度的适应性,这些是最常见和最严重的事件,导致全球小麦产量损失最大。
气候变化是快速全球变暖的常用术语,威胁着作物农业的持久性(Pörtner等人,2022年)。气候变化的后果包括温度上升,严重的野火,日益破坏性的风暴,洪水,干旱,海平面上升以及对生物多样性的威胁(Pörtner等人,2022年)。气候变化危害包括作物野生亲戚在内的植物群落的生存(Thuiller等,2005)(CWR; Dempewolf等,2014),对某些宗教文化的生存至关重要的PGR,其中包含基因和特质对农作物的生产和保护物的价值,而对农作物的生产和保护(Casteauz-Alvarez-alvarez et e an ealvare et e an eal eal eal ealvare et e ep and ep and an e ep and ep and ep and ep and ep and ep and ep and ep and ep and ep and ep。 Jarvis等,2008)。目前的现场构成了最广泛采用的策略,以保护CWR和PGR免受诸如自然和农业栖息地,文化和社会变化以及其他因素等威胁(Byrne等人,2018年)。nevertherther,事实保存不是失败的证据:Fu(2017)和Khoury等。(2021)全面分类了这些因素,包括气候变化,导致了Genebanks中PGR受保护的原位的脆弱性。这些因素不仅会导致PGR的完全丧失,还会导致遗传漂移,遗传侵蚀和多样性的总体降低。
多花黄精是百合科黄精属多年生草本植物,具有重要的药用和营养价值。在我国,该物种是传统的药食同源植物,应用历史悠久,受到人们的广泛赞赏。然而,随着对药材需求的不断增长,过度采伐导致野生资源枯竭和遗传侵蚀的风险。加之品种混乱栽培和优质种质资源的缺乏,导致药材质量参差不齐。因此,迫切需要对该物种进行遗传多样性评估,制定完善的保护计划。本研究利用简单序列重复(SSR)分子标记技术,评估了从中国7个地区采集的96个样品的遗传多样性和种群结构。本研究利用10个多态性SSR标记共检测到60个等位基因(Na),平均每个位点产生6.0个等位基因,多态信息含量(PIC)值介于0.3396~0.8794之间,平均值为0.6430,有效等位基因数(Ne)平均值为2.761,Shannon信息指数(I)平均值为1.196。居群结构分析表明,在分子水平上可将多色黄精种质划分为3个亚居群(JZ、QY、JD),与之前根据植物个体表型性状划分的亚类相对应。分子变异分析(AMOVA)表明,74%的遗传变异发生在不同地区居群内的个体之间。对96个种质样品进行系统发育分析, 将其分为3个主要种群, 其中QY和JD亚种群聚集程度较大, 这可能与它们所处的山区分布及当地气候环境有关. 遗传分化系数(Fst)值较低, 为0.065, 表明种群分化程度较低. JZ种群与另外两个种群(QY和JD)的遗传分化系数(Fst)比值明显高于QY和JD种群之间的比值. 基于聚类分析
全球农业生产受到迅速增加的人口和不利气候变化的严重威胁。目前,粮食安全是到2050年喂养100亿人的巨大挑战。通过常规方法驯化作物不足以满足食物需求,并且无法快速追踪作物的产量。此外,强化繁殖和严格选择上等特征会导致遗传侵蚀并消除应激响应基因,从而使作物更容易出现非生物胁迫。盐胁迫是最普遍的非生物胁迫之一,它在全球范围内造成严重的作物损害。最新的基因组学和转录组学技术的最新创新已经为发展盐度耐受作物铺平了道路。从头驯化是通过利用作物野生亲戚(CWRS)的遗传多样性来产生新作物基因型的有前途策略之一。下一代测序(NGS)技术开辟了新的途径,从CWRS中识别出独特的耐盐基因。这也导致了高度注释的作物泛基因组的组装,以捕捉遗传多样性的完整景观,并重新夺回了物种的巨大基因库。鉴定新基因以及针对靶向操作的尖端基因组编辑工具的出现,从头驯化了一种发展耐盐作物的方向。但是,与基因编辑的作物相关的一些风险造成了全球采用的障碍。盐植物主导的盐度耐受性繁殖提供了一种替代策略,以识别可用于开发新作物以减轻盐度胁迫的极其耐盐品种。