虽然对澳大利亚能源系统的权力下放是变革性脱碳和净零途径的关键部分,但现在已广泛认识到,对计划,投资,运营和调度的完全集中式控制不太可能在高渗透DER渗透的能源市场中有效或有效。分散的能源系统促进了最佳生产,存储,部署和使用可再生能源或接近来源的可再生能源。除了为更多最终用户提供更大的清洁能源服务外,能源系统的权力下放还可以减少网络效率低下以及环境和经济成本(例如,避免昂贵的大规模生成和其他网络基础架构)。同时,网络不再是从批发市场到最终用户(消费者)的电力提供商。同样,许多消费者不再是被动最终用户。这些及其相关的更改都作为对能源部门的现有监管框架的重大挑战,包括政策,法律,法规,规则,代码等。截至2023年,很少有人建议现有的监管框架适合用途。相反,它是脱碳并实现净零排放的主要障碍。
基于上述数据可视化平台,研究了数据的外在表现形式,在接下来的工作中,尝试去理解数据内部隐藏的信息。设计了一种基于支持向量回归(SVR)的短期负荷预测方法,为网络重构提供更高精度的负荷预测。利用二阶锥程序(SOCP)将三相平衡最优潮流的非凸性放宽为最优潮流(OPF)问题。采用交替方向乘子法(ADMM)以分布式方式计算最优潮流。考虑到配电系统的现实情况,构建了一个三相不平衡配电系统,该系统包括变电站层面的小时运行计划和馈线层面的分钟潮流运行。在变电站层面最小化含可再生能源系统的运行成本。用机会约束模拟可再生能源发电的随机分布模型,并用高斯混合模型 (GMM) 和基于遗传算法的期望最大化 (GAEM) 建模导出的确定性形式。在实时 (RT) 调度中,使用 OPF 进一步降低系统成本。半正定规划 (SDP) 用于将三相不平衡配电系统的非凸性放宽为凸问题,这有助于实现全局最优结果。以并行方式,ADMM 实现了在短时间内获得结果。
摘要 — 太阳能电池板和风力涡轮机等分布式能源 (DER) 的采用正在将传统能源网转变为更加分散的系统,其中微电网正成为一个关键概念。微电网中的点对点 (P2P) 能源共享通过允许交换剩余能源和更好地管理能源资源,提高了整个系统的效率和灵活性。这项工作分析了 P2P 能源共享对三种情况的影响 - 微电网内部、与相邻微电网以及所有微电网在配电系统中组合在一起。与可再生能源集成的标准 IEEE 123 节点测试馈线被划分为微电网。对于微电网之间的 P2P 能源共享,结果显示成本显著降低、对电网的能源依赖减少以及系统弹性显著提高。我们还预测了微电网的能源需求,以评估微电网控制和运行的能源弹性。总体而言,该分析为 P2P 能源共享微电网的性能和可持续性提供了宝贵的见解。索引术语 — 联盟博弈论、复杂网络、能源弹性微电网、净计量、点对点能源共享、渗透阈值、可再生能源、使用时间价格、可视性图表。
o 提高公用事业计量实践的透明度,以及对太阳能加储能系统非出口继电器和控制器的要求 o 允许客户用同等或更大容量的逆变器替换现有逆变器,并鼓励客户在现有逆变器使用寿命结束时用智能逆变器替换现有逆变器——假设未来大多数逆变器将被常见的智能逆变器取代,以产生电网效益
气候变化需要实施不可避免地会影响分配系统的进化和存在本身的行动。最终能源用途的电气化是最清晰的例子之一,这意味着热泵和电动性的显着增长(汽车,卡车和渡轮)。作者在S5 SPAN中面临的挑战,即管理有关预期演变,空间位置和时间巧合的新负载的不确定性,到对自动化和控制的开发和控制所有资源的利用,并减少需要立即改进或重建的需求。再次,论文证实了所有可用类型的灵活性的使用是仍然很难包含在Daily DSO生活中的有价值的选择。电气必须伴随着可再生产生的增加。
摘要:由于充电时间短,电动汽车 (EV) 的超快速充电 (XFC) 近来兴起。然而,XFC 站的电动汽车超高充电功率可能会严重影响配电网。本文讨论了当前配电网中 XFC 站充电功率需求的估计以及使用可再生能源的多个 XFC 站的设计。首先,利用从车辆行驶调查数据集中获得的电动汽车到达时间和充电状态 (SOC) 分布创建了一个蒙特卡洛 (MC) 模拟工具。考虑各种影响因素以获得对 XFC 站充电功率需求的实际估计。然后,提出了一种确定配电网中多个 XFC 站的储能系统 (ESS) 的最佳能量容量、ESS 额定功率和光伏 (PV) 板尺寸的方法,目的是实现最佳配置。最佳功率流技术应用于此优化,以便最佳解决方案不仅满足充电需求,还满足与 XFC、ESS、PV 板和配电网相关的运行约束。用例的仿真结果表明,提出的MC仿真可以估计近似现实世界的XFC充电需求,并且配电网中多个XFC站中优化的ESS和PV单元可以降低XFC站的年总成本并提高配电网的性能。
摘要:本研究调查了由于太阳能光伏 (PV) 渗透导致省电力局 (PEA) 低压 (LV) 网络电压曲线上升的情况。本研究提出了通过使用电池储能系统 (BESS) 应用将电压曲线保持在 PEA 标准限制范围内的解决方案。使用二分法确定 BESS 最佳大小和位置的算法在夏季/冬季和周末/工作日行为等不同场景下进行了检查和模拟。此外,还考虑了在不同位置分配电池。带有 DPL 脚本和 Python 的 DIgSILENT 发电厂是用于涵盖不同场景情况的工具。结果表明,如何实施 BESS 来解决电压上升问题的最佳实践是在配电变压器处安装 BESS,并在靠近负载的每个馈线末端分别安装 BESS。然而,在配电变压器处安装 BESS 的最佳尺寸几乎是在每个馈线末端安装的两倍。
摘要 —气候变化可能会增加一个地区遭受多重极端天气事件袭击的风险,这给可再生能源渗透率不断提高的时代配电系统规划人员带来了重大挑战。迫切需要规划方法更加灵活,并允许在未来进行自适应调整,以对冲极端天气事件情景中的高度不确定性。在这项工作中,我们提出了一种考虑多种极端天气事件的弹性导向配电系统规划方法。开发了一种多阶段混合随机稳健公式,不仅可以为初始投资建模决策,还可以为响应特定极端事件的自适应投资和紧急运营建模决策,同时考虑长期和短期不确定性。我们的模型通过一种新颖的渐进式对冲算法求解,该算法嵌入了嵌套列和约束生成方法。案例研究证明了所提出的方法在制定灵活且经济实惠的规划决策以保护配电系统免受多种极端天气事件的影响方面的优势。
简介................................................................................................................................................................. 4
目前部署的用于配电网电压优化的电压无功基础设施无法满足 21 世纪电网的严格技术要求。如果处理不当,传统的电压控制系统可能会阻碍可再生能源资源在未来智能电网中的广泛部署。例如,可再生能源和新型储能系统在配电系统中的引入对无缝电压控制构成了威胁。为了克服这些障碍,需要研究和实施智能电压无功控制方法。然而,要实现这些目标,需要全面了解电压无功技术的当代策略和发展。到目前为止,已经开发了各种技术来适应可再生能源大量渗透到配电网中。本文全面回顾了当前的技术,这些技术使配电系统运营商能够为可再生能源丰富的电网选择适当的电压无功控制策略。这篇评论文章研究了配电网的新兴电压无功技术及其优缺点。它还概述了该主题的一些未解决的研究问题和未来方向。 © 2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。