聚酰亚胺通常通过两步工艺合成,其中涉及芳香族二酐与芳香族二胺的反应。该过程会形成中间体聚酰胺酸或聚酰胺酸酯前体,通常称为中间体。第二步是将聚酰胺酸进行热或化学酰亚胺化,从而形成具有酰胺键 (CONH) 的最终聚酰胺结构。
包括天然产物,肽和合成小型化合物在内的各种分子通过与靶向生物大分子的特定相互作用表现出其生物学活性。蛋白质在内,包括酶,受体和离子通道代表这些靶标的主要群体。鉴定与生物活性配体相互作用的未知蛋白靶标在化学生物学和药物发育领域已经是必不可少的。但是,这种研究方法是耗时且费力的。靶标识别包括一系列过程:(1)使用具有生物活性配体作为诱饵的靶标的靶; (2)钩靶的富集; (3)通过Edman退化或质谱法(MS)对目标进行序列分析。1对于第一步,照片 - 亲和力标记允许在光辐射时将诱饵共价为相应的目标,因为可能适用于低亲和力配体靶向对。1a,b,2然后将钩状靶标与生物素链接蛋白珠相互纯化的生物素化接头分子使用生物素 - 链霉亲蛋白相互作用链接。1,3
酶工程是增强生物催化性能并优化基于蛋白质的材料的强大方法。本研究采用祖先序列重建(ASR),合理设计和过程条件优化,以提高酶稳定性,催化效率和功能特性。探索了四个关键领域:用于手性胺合成,酶促酰胺键的形成,Baeyer-Villiger氧化选择性控制和基于蛋白质的含水材料的跨激酶工程。 为了增强来自硅杆菌pomeroyi(SP -ATA)的ω-转氨酸酶的热稳定性和底物范围,使用ASR来识别稳定突变,从而提高其工业适合性。 为酰胺键的形成,有理设计优化了铜绿假单胞菌N-酰基转移酶(PA AT),并与氯瓜羧酸还原酶还原酶(CAR SR -A)的蛋白质rugosus rugosus rugosus rugosus rugosus rugosus rugosus rugosus rugosus的腺苷酸化结构域相结合。 工程的Y72S/F206N变体显着提高了与药物相关的羧酸的转化率,为化学合成提供了可持续的替代品。 在Baeyer-Villiger氧化中,研究了过程优化以控制区域选择性。 从杆菌和节肢动物物种中工程的Baeyer-Villiger单加氧酶(BVMO)通过增加氧气的可用性,将产品分布转移到了“正常”的内酯。 用于基于蛋白质的吸水材料,patatin诱变改变了带电的氨基酸组成。探索了四个关键领域:用于手性胺合成,酶促酰胺键的形成,Baeyer-Villiger氧化选择性控制和基于蛋白质的含水材料的跨激酶工程。为了增强来自硅杆菌pomeroyi(SP -ATA)的ω-转氨酸酶的热稳定性和底物范围,使用ASR来识别稳定突变,从而提高其工业适合性。为酰胺键的形成,有理设计优化了铜绿假单胞菌N-酰基转移酶(PA AT),并与氯瓜羧酸还原酶还原酶(CAR SR -A)的蛋白质rugosus rugosus rugosus rugosus rugosus rugosus rugosus rugosus rugosus的腺苷酸化结构域相结合。工程的Y72S/F206N变体显着提高了与药物相关的羧酸的转化率,为化学合成提供了可持续的替代品。在Baeyer-Villiger氧化中,研究了过程优化以控制区域选择性。从杆菌和节肢动物物种中工程的Baeyer-Villiger单加氧酶(BVMO)通过增加氧气的可用性,将产品分布转移到了“正常”的内酯。用于基于蛋白质的吸水材料,patatin诱变改变了带电的氨基酸组成。如分子动力学模拟所证明的那样,富含LYS和ASP的变体增加了吸收吸水,这证明了酶工程在可持续吸收材料开发中的潜力。这项研究整合了计算和实验酶工程策略,以改善化学合成和功能性生物材料的生物催化,为工业生物技术和可持续材料科学提供新颖的解决方案。
电子-分子碰撞过程指的是分子捕获低能电子(即能量高达 ∼ 20 eV)形成短暂、不稳定的分子阴离子,然后解离成几个碎片(一个负离子,其他都是中性),这是一个长期研究的过程,称为解离电子附着(DEA)。DEA 是基于电子-分子碰撞的基本相互作用之一 [1-8],在凝聚态物质 [9-12]、气态电子 [13] 到低能等离子体 [14] 等多个领域中发挥着重要作用。自然环境中 DEA 与分子相关的低能电子通常是物质与高能光子或粒子之间初级相互作用的副产物。研究表明,这些电子在生物过程中起着关键作用,例如引发 DNA 链断裂和其他 DNA 解离过程 [ 15 – 18 ] 以及蛋白质的辐射损伤 [ 19 ]。甲酰胺 (HCONH 2 ) 被广泛认为是研究蛋白质和肽化学的原型模型分子,因为它具有简单而丰富的结构,其中包括一个酰胺键。甲酰胺分解成其他值得注意的简单有机分子(例如 CH、HCN、HCNO 等)已在实验和理论环境中得到广泛研究。甲酰胺由许多复杂生物分子(如蛋白质和核酸)的祖先组成,被认为是简单生物分子进化为复杂结构的重要环节。此外,甲酰胺由于其 NC 酰胺键而引起了广泛关注。这一特征使甲酰胺成为研究电子捕获的典型分子
有序二维共价有机骨架(2D-COF)的原子级精确设计机会与非晶态线性聚合物、交联聚合物和超支化聚合物完全不同,从而可以前所未有地操纵构成含杂原子(N、S 和 O 等)功能团的初级和更高级排列。[1] 这类新兴的有序聚合物材料表现出有机亚基的网状生长,这些亚基通过强共价键(席夫键形成、[2] 环硼氧烷键、[3] C C 键形成、[4] 酰胺键、[5] 吩嗪键、[6] 苯并噻唑键、[7] 二恶英、[8] 二硫代丙烷键[9] 等)相互锁合,通过相邻层之间的 π – π 相互作用配置成三维阵列,并且对组成和性能具有良好的预测。结构的预测是
摘要:通过纳米颗粒修改聚合物基质可能是提高纤维增强聚合物(FRP)复合材料性能的有前途的方法。有机溶剂通常用于分散聚合物基质中的石墨烯(GO)。在这项研究中,开发了一种绿色,易于且有效的方法来制备环氧/GO纳米复合材料。原位聚合用于合成纳米复合材料,消除了对有机溶剂和表面活性剂的需求。通过仅加载0.6 wt%进入环氧树脂,杨氏模量,拉伸强度和韧性分别提高了38%,46%和143%。分裂分析表明,纯树脂的平滑断裂表面变为该纳米复合材料中高度强化的断裂表面。塑性变形,裂纹固定和挠度有助于改善纳米复合材料的韧性。FTIR的调查表明,酰胺键是由羧酸基团在分散过程中与固化剂中的一些胺基中的反应产生的。
肽是通过酰胺键连接的氨基酸单位形成的短寡聚物。7它们是蛋白质的重要组成部分,也是生物结构和功能的因果因素。由于它们与组织,细胞和其他生物成分的良好兼容性,肽具有令人难以置信的生物能力和可生物降解,从而增加了它们在生物医学应用方面的优势。8改变氨基酸侧链的能力可以精确调整肽的二级和第三级结构。这种修改可导致细胞渗透增加,有效载荷保留增加或自组装功能。这些二级结构(包括A螺旋和B表格)也可能引起肽链之间的相互作用。9次级结构的相互作用会导致形成纳米结构的肽,例如纳米晶状体和胶束,从而可以增加细胞的细胞和较大的表面积,从而促进药物和成像剂的结合。此外,可以在某些条件下触发这些肽的形成,从而允许extible和控制。基于肽的材料已被开发为用于治疗疾病的独特而有前途的工具。它们具有多种活性,包括药物输送,传感,细胞靶向,组织的深度渗透以及免疫反应,以增强抗肿瘤治疗的影响。10 - 12
自然已经发展为具有反应性弹头的分子的生物合成途径,这些弹头启发了许多治疗剂,包括青霉素抗生素。肽已被证明是特别有效的共价抑制剂,可提供必需的抗菌,抗病毒和抗癌剂。在这里,我们提供了大自然部署在用β-内乳酮弹头组装肽的途径的全面表征,β-内酮弹头是具有有希望的抗癌活性的有效蛋白酶体抑制剂。弹头组件涉及三步隐性甲基化序列,在空间要求的β-内二乳酸化过程中,可能需要减少不利的静电相互作用。酰胺键合成酶和三磷酸腺苷(ATP)-GRASP酶将氨基酸促成氨基酸与β-内乳酮弹头,从而产生生物活性肽产物。在体外重新建立了整个β-内狮肽的途径后,我们继续通过酶促级联反应提供多种类似物。我们的方法比目前用于生产临床重要的含弹头肽的合成方法更有效,更清洁。
预计无膜上的凝聚物中丰富的环境可以通过改变其能量景观以提供独特的系统特定结果来增强反应的动力学。13,14然而,只有很少的例子显示在没有酶的情况下独立驱动或改善反应的凝聚力。值得注意的是,Sprujit和同事显示了简单的凝聚力介导的醛醇冷凝,15,并使用铁氰化物凝聚力形成酰胺键。16最近,Fraccia和Martin报道了EDC介导的盐和光敏凝聚力内部的寡核苷酸连接。17通常,相对带电的多价聚合物可以分离为熵驱动的,富含聚合物的复合物凝聚力。3,18然而,当涉及低多重的短低聚物和小的有机/无机分子时,这种相分离的优惠要差得多。11,19,20克服了这一挑战,并在复杂的凝聚力中使用量身定制的小分子可以解锁更大的种类和控制刺激反应能力,实现高级寿命属性,多级层次结构组织以及新兴的特性以及诸如增强催化的新兴特性。11,16,21–25
摘要 近年来,护肤品的开发日益增多。含有经证实有效的活性成分的化妆品配方,即药妆,是基于各种化合物,包括肽。具有抗酪氨酸酶活性的不同美白剂已应用于药妆领域。尽管它们很容易获得,但由于毒性、稳定性差等因素,其适用性往往受到限制。在这项工作中,我们展示了缩氨基硫脲 (TSC)-肽结合物对二酚酶活性的抑制作用。三肽 FFY、FWY 和 FYY 通过酰胺键形成在固相中与三种带有一个或两个芳香环的 TSC 结合。然后在鼠黑色素瘤 B16F0 细胞系中检查化合物作为酪氨酸酶和黑素生成抑制剂的作用,然后对这些细胞进行细胞毒性测定。计算机模拟研究解释了测试化合物之间观察到的活性差异。 TSC 1 结合物在微摩尔水平上抑制蘑菇酪氨酸酶,IC 50 低于广泛使用的参考化合物曲酸。到目前为止,这是第一份关于合成用于酪氨酸酶抑制目的的硫脲与三肽结合的报告。