L-377,202 前药由阿霉素 (Dox) 与前列腺特异性抗原 (PSA) 肽底物结合而成,该肽底物可在肿瘤部位被酶活性 PSA 裂解。尽管在 I 期试验中最初很有希望,但由于某种程度的非特异性激活和毒性问题,L-377,202(本文称为 Dox-PSA)的进一步测试已停止。为了提高 Dox-PSA 的安全性,我们将其封装到低温敏感脂质体 (LTSL) 中以绕过全身激活,同时在轻度高温 (HT) 下控制释放时保持其生物活性。观察到暴露于轻度 HT 的 PSA 表达细胞的细胞核中活性前药的时间依赖性积累,表明 Dox-PSA 有效地从 LTSL 中释放出来,被 PSA 裂解并以游离 Dox 的形式进入细胞核。此外,我们已经证明,在 37°C 下,负载 Dox-PSA 的 LTSL 可以阻断其生物活性,而与游离 Dox-PSA 相比,与轻度 HT 结合会导致 2D 和 3D PC 模型中的细胞毒性增强。更重要的是,与游离 Dox-PSA 相比,封装在 LTSL 中的 Dox-PSA 延长了其血液循环时间,并减少了 C4-2B 肿瘤小鼠心脏中的 Dox 积累,从而显著改善了 Dox-PSA 的治疗窗口。最后,在实体和转移性 PC 肿瘤模型中,负载 Dox-PSA 的 LTSL 与 HT 相结合显著延缓了肿瘤生长,其速度与用游离 Dox-PSA 治疗的小鼠相似。这表明该策略可以阻断 Dox-PSA 的系统性裂解而不会降低其在体内的功效,这可能是治疗局部晚期 PC 患者的更安全的选择。
细胞凋亡或程序性细胞死亡是一个重要的生理过程,在发育和组织稳态中起着至关重要的作用。然而,凋亡也涉及多种病理状况。凋亡细胞的特征是特定的形态学和生化变化,包括细胞收缩,染色质凝结和基因组DNA的核小体裂解。在分子水平上,细胞凋亡受到严格调节,主要是由于天冬氨酸特异性半胱氨酸蛋白酶(caspase)级联反应而精心策划的。有两种主要途径导致胱天蛋白酶的激活。其中的第一个取决于线粒体的参与(独立于受体),第二个涉及死亡受体与其配体的相互作用。pro和抗凋亡成员调节线粒体途径。细胞应激会诱导促凋亡的Bcl-2家族成员从细胞质转移到线粒体,在那里它们诱导细胞色素C的释放,而抗凋亡的Bcl-2蛋白可以防止细胞色素C从线粒体中释放出来,从而可以保留细胞存活。在细胞质中,细胞色素c催化凋亡蛋白酶激活因子1的寡聚,从而促进procaspase-9的激活,然后激活procaspase-3。另外,死亡受体的连接,例如肿瘤坏死因子受体1和FAS受体,会导致procaspase-8的激活。d 2001 Elsevier Science Inc.保留所有权利。成熟的caspase现在可以直接激活procaspase-3或裂解促凋亡的Bcl-2同源性3仅蛋白质,然后随后诱导细胞色素c释放。然而,这两种途径的最终结果是胱天蛋白酶激活和特定细胞底物的裂解,从而导致与凋亡表型相关的形态和生化变化。
●J.R. Cronly-Dillon和G.W.佩里,1975年。在产后早期生活中大鼠视觉皮层中微管蛋白的合成与大开眼界有关。生理学杂志252,27-28。●J.R. Cronly-Dillon和G.W.佩里,1976年。小管蛋白合成在发展大鼠视觉皮层中。自然261,581-583。●J.R. Cronly-Dillon和G.W.佩里,1978年。微管蛋白合成在发展大鼠和小猫的脑皮质中。生理学杂志287,26-27。●G.W.Perry和J.R. Cronly-Dillon,1978年。微管蛋白合成。大脑研究142,374-378。 ●J.R. Cronly-Dillon和G.W. 佩里,1979年。 在连帽大鼠中视觉皮层发育的关键时期,视觉体验对微管蛋白合成的影响。 生理学杂志293,469-484。 ●T.R. Vidyasagar和G.W. 佩里,1979年。 改进的钨微电极。 大脑研究公告4,285-286。 ●G.W. Perry和D.L. 威尔逊,1980年。 周围神经损伤后蛋白质合成和轴突转运。 神经科学学会摘要6,94。 ●G.C. Stone,D.L。 Wilson和G.W. 佩里,1980年。 在二维凝胶上的放射性标记蛋白的定量:分析蛋白质合成和基因表达变化的方法的测试。 电泳'79,B.J。 Radola,编辑。大脑研究142,374-378。●J.R. Cronly-Dillon和G.W.佩里,1979年。在连帽大鼠中视觉皮层发育的关键时期,视觉体验对微管蛋白合成的影响。生理学杂志293,469-484。●T.R.Vidyasagar和G.W.佩里,1979年。改进的钨微电极。大脑研究公告4,285-286。●G.W.Perry和D.L. 威尔逊,1980年。 周围神经损伤后蛋白质合成和轴突转运。 神经科学学会摘要6,94。 ●G.C. Stone,D.L。 Wilson和G.W. 佩里,1980年。 在二维凝胶上的放射性标记蛋白的定量:分析蛋白质合成和基因表达变化的方法的测试。 电泳'79,B.J。 Radola,编辑。Perry和D.L.威尔逊,1980年。周围神经损伤后蛋白质合成和轴突转运。神经科学学会摘要6,94。●G.C.Stone,D.L。 Wilson和G.W. 佩里,1980年。 在二维凝胶上的放射性标记蛋白的定量:分析蛋白质合成和基因表达变化的方法的测试。 电泳'79,B.J。 Radola,编辑。Stone,D.L。Wilson和G.W. 佩里,1980年。 在二维凝胶上的放射性标记蛋白的定量:分析蛋白质合成和基因表达变化的方法的测试。 电泳'79,B.J。 Radola,编辑。Wilson和G.W.佩里,1980年。在二维凝胶上的放射性标记蛋白的定量:分析蛋白质合成和基因表达变化的方法的测试。电泳'79,B.J。Radola,编辑。Radola,编辑。de Gruyter and Co.柏林,第361-382页。●G.W.Perry和D.L. 威尔逊,1981年。 蛋白质合成和神经再生过程中的轴突转运。 神经化学杂志37,1203-1218。 ●G.W. Perry和D.L. 威尔逊,1981年。 比较青蛙和大鼠感觉神经元中快速运输的蛋白质。 神经科学学会摘要7,486。 ●B。Tedeschi,D.L。 Wilson,A。Zimmerman和G.W. 佩里,1981年。 轴突运输的蛋白是否是从坐骨神经释放出来的? 大脑研究211,175-178。 ●G.W. Perry和D.L. 威尔逊,1982年。 鉴定α和β小管蛋白亚基。 神经化学杂志38,1155-1159。 ●G.W. Perry,S.R。 Krayanek和D.L. 威尔逊,1983年。 蛋白质合成和背根再生过程中的快速轴突转运。 神经化学杂志40,1590-1598。 ●G.W. Perry和D.L. 威尔逊,1983年。 青蛙和大鼠中的多肽:快速运输和丰富的神经蛋白的进化变化。 神经化学杂志41,772-779。Perry和D.L.威尔逊,1981年。蛋白质合成和神经再生过程中的轴突转运。神经化学杂志37,1203-1218。●G.W.Perry和D.L. 威尔逊,1981年。 比较青蛙和大鼠感觉神经元中快速运输的蛋白质。 神经科学学会摘要7,486。 ●B。Tedeschi,D.L。 Wilson,A。Zimmerman和G.W. 佩里,1981年。 轴突运输的蛋白是否是从坐骨神经释放出来的? 大脑研究211,175-178。 ●G.W. Perry和D.L. 威尔逊,1982年。 鉴定α和β小管蛋白亚基。 神经化学杂志38,1155-1159。 ●G.W. Perry,S.R。 Krayanek和D.L. 威尔逊,1983年。 蛋白质合成和背根再生过程中的快速轴突转运。 神经化学杂志40,1590-1598。 ●G.W. Perry和D.L. 威尔逊,1983年。 青蛙和大鼠中的多肽:快速运输和丰富的神经蛋白的进化变化。 神经化学杂志41,772-779。Perry和D.L.威尔逊,1981年。比较青蛙和大鼠感觉神经元中快速运输的蛋白质。神经科学学会摘要7,486。●B。Tedeschi,D.L。Wilson,A。Zimmerman和G.W. 佩里,1981年。 轴突运输的蛋白是否是从坐骨神经释放出来的? 大脑研究211,175-178。 ●G.W. Perry和D.L. 威尔逊,1982年。 鉴定α和β小管蛋白亚基。 神经化学杂志38,1155-1159。 ●G.W. Perry,S.R。 Krayanek和D.L. 威尔逊,1983年。 蛋白质合成和背根再生过程中的快速轴突转运。 神经化学杂志40,1590-1598。 ●G.W. Perry和D.L. 威尔逊,1983年。 青蛙和大鼠中的多肽:快速运输和丰富的神经蛋白的进化变化。 神经化学杂志41,772-779。Wilson,A。Zimmerman和G.W.佩里,1981年。轴突运输的蛋白是否是从坐骨神经释放出来的?大脑研究211,175-178。 ●G.W. Perry和D.L. 威尔逊,1982年。 鉴定α和β小管蛋白亚基。 神经化学杂志38,1155-1159。 ●G.W. Perry,S.R。 Krayanek和D.L. 威尔逊,1983年。 蛋白质合成和背根再生过程中的快速轴突转运。 神经化学杂志40,1590-1598。 ●G.W. Perry和D.L. 威尔逊,1983年。 青蛙和大鼠中的多肽:快速运输和丰富的神经蛋白的进化变化。 神经化学杂志41,772-779。大脑研究211,175-178。●G.W.Perry和D.L. 威尔逊,1982年。 鉴定α和β小管蛋白亚基。 神经化学杂志38,1155-1159。 ●G.W. Perry,S.R。 Krayanek和D.L. 威尔逊,1983年。 蛋白质合成和背根再生过程中的快速轴突转运。 神经化学杂志40,1590-1598。 ●G.W. Perry和D.L. 威尔逊,1983年。 青蛙和大鼠中的多肽:快速运输和丰富的神经蛋白的进化变化。 神经化学杂志41,772-779。Perry和D.L.威尔逊,1982年。鉴定α和β小管蛋白亚基。神经化学杂志38,1155-1159。●G.W.Perry,S.R。 Krayanek和D.L. 威尔逊,1983年。 蛋白质合成和背根再生过程中的快速轴突转运。 神经化学杂志40,1590-1598。 ●G.W. Perry和D.L. 威尔逊,1983年。 青蛙和大鼠中的多肽:快速运输和丰富的神经蛋白的进化变化。 神经化学杂志41,772-779。Perry,S.R。Krayanek和D.L. 威尔逊,1983年。 蛋白质合成和背根再生过程中的快速轴突转运。 神经化学杂志40,1590-1598。 ●G.W. Perry和D.L. 威尔逊,1983年。 青蛙和大鼠中的多肽:快速运输和丰富的神经蛋白的进化变化。 神经化学杂志41,772-779。Krayanek和D.L.威尔逊,1983年。蛋白质合成和背根再生过程中的快速轴突转运。神经化学杂志40,1590-1598。●G.W.Perry和D.L. 威尔逊,1983年。 青蛙和大鼠中的多肽:快速运输和丰富的神经蛋白的进化变化。 神经化学杂志41,772-779。Perry和D.L.威尔逊,1983年。青蛙和大鼠中的多肽:快速运输和丰富的神经蛋白的进化变化。神经化学杂志41,772-779。
France *correspondence: Prof. Dr. Juergen SIEPMANN College of Pharmacy, INSERM U1008 University of Lille, 3, rue du Professeur Laguesse, 59006 Lille, France juergen.siepmann@univ-lille.fr Abstract Different types of ibuprofen-loaded, poly (D,L lactic-co-glycolic acid) (PLGA)-based implants were prepared by 3D打印(液滴沉积建模)。网格形植入物的理论填充密度从10%到100%变化。在琼脂糖凝胶和搅拌良好的磷酸盐缓冲液pH 7.4中测量药物释放。使用重量法测量,光学显微镜,差分扫描量热法,凝胶渗透色谱和扫描电子显微镜来监测植入物的关键特性(以及暴露于释放介质时的动态变化)。有趣的是,与实验设置无关,植入物的植入物的释放相似。相比之下,填充密度100%的植入物显示释放动力学较慢,并且在琼脂糖凝胶中改变了释放曲线的形状。这些观察结果可以用聚合物丝之间的连续水相的存在(或不存在)来解释。在较低的填充密度下,这足以使该药物从单丝中释放出来。相比之下,在高填充密度下,细丝的合奏起着更大的(或多或少均匀)的聚合物矩阵,并且该药物要克服的平均扩散途径更长。关键词:PLGA;注入; 3D打印;布洛芬;肿胀;药物释放机制琼脂糖凝胶(模仿生物组织)阻碍了大量的PLGA肿胀,并延迟了最终的快速药物释放阶段的开始。对从基于PLGA的3D印刷植入物对药物释放的控制的机械理解得到了改进,可以帮助促进这种高级药物输送系统的优化。
发现DNA是95年前细菌中的转化原理,几乎立即导致1)反驳旧且存在激烈的争议,因为这将需要通过环境因素来重写“生命之书”,而依靠营养,压力和2)与生存的存在,而不是存在于dna和2),而dna和2)的存在与dna的存在不同。In this opinion paper, it is intended to overcome this narrowing by the re-consideration of other cellular constituents, i.e., plasma membranes (PMs) and organelles as well as the previously identified extracellular vesicles (EVs) and micelle-like complexes, which may operate as vehicles of the transfer of so-called M(E)Ls from donor to acceptor cells, from parental to offspring有机体,作为生物遗传的非DNA问题。m(e)ls代表整合和周围膜蛋白,糖基 - 磷酸 - 磷酸磷酸蛋白质蛋白质蛋白(GPI-APS)以及与胆固醇和(糖)磷脂的结构的结构和室外构型和toplogy-exolodic and Ortologicatival and tocoluction and tocoluction and tocoluction和功能,并将其与胆固醇和(Glyco)结合在一起。无知。最近的实验研究表明,在从供体细胞中释放出来并通过受体细胞中的自组织机制(而不是自组装)转移并复制后,这些MEL会诱导新的代谢表型,例如刺激脂质和糖原合成。最关键的是,在大鼠和人类中,MEL的结构易受环境因素,例如机械扭曲,营养,这可能有助于表型可塑性和获得性特征的遗传。显然不是基于DNA和与DNA相关蛋白的修饰的那些表观遗传机制,迄今尚未在有关常见复杂疾病的发病机理的研究中得到解决。提出的意见旨在最初的鼓励,以识别和表征一些(最重要的)原因
本研究的目的是开发乙酰氯芬酸的结肠靶向药物递送系统。瓜尔胶 (GG) 和黄原胶 (XG) 在该药物递送系统中用作载体。使用不同比例的瓜尔胶:黄原胶(如(1.25:1.25)、(1.5:1)和(1.75:0.75))制备乙酰氯芬酸的基质和压缩包衣片。对上述瓜尔胶和黄原胶配方进行了压缩后参数评估。在胃和小肠的生理环境中,在 5 小时溶解研究中,14.52-17.04% 的乙酰氯芬酸从乙酰氯芬酸基质片中释放出来,具体取决于配方中使用的瓜尔胶:黄原胶的比例。结果发现乙酰氯芬酸基质片未能在溶解研究的 5 小时内控制药物释放。压缩包衣制剂被开发用于在胃和小肠的生理环境中 5 小时溶解研究中释放少于 4% 的醋氯芬酸。溶解研究继续在大鼠盲肠内容物中进行,溶解研究结束时,醋氯芬酸压缩包衣片在被结肠细菌降解后释放了 63.75-79.90% 的醋氯芬酸。结果表明,用瓜尔胶:黄原胶(1.75:0.75)压缩包衣片 CT3 最适合提供醋氯芬酸在结肠局部作用的靶向性,因为其在前 5 小时内释放的药物极少。醋氯芬酸压缩包衣片在 40º C/75% RH 下储存 3 个月后,其外观、药物含量或药物释放模式均未发生变化。
该州的设施;呢资助该州孤儿地质存储设施的堵塞,放弃,回收和补救;和 !确保与地质存储设施长期管理相关的成本由地质存储运营商以管理费的形式承担。该法案创建地质存储管理企业委员会(企业委员会)来管理企业。该法案要求每个地质存储操作员为该州注入地质存储操作员注入的每吨注射二氧化碳的年度管理费。能源和碳管理委员会(委员会)代表企业收取管理费。收取的所有作为管理费的资金都归功于该法案中创建的地质存储管理企业现金基金。地质存储管理企业现金基金中的货币不断拨给企业。企业和委员会都可以每个人都采用规则来执行该法案。委员会批准网站关闭:!注入二氧化碳的所有权,以及用于注入或存储注入二氧化碳的任何剩余设施的所有权,转移到州而无需支付额外补偿;呢在特定情况下,地质存储运营商是从与注入二氧化碳持续存储相关的所有监管责任中释放出来的,以及相关的地质存储设施的长期管理;和 !确定规范浅的权力企业进行了长期管理二氧化碳和任何相关的地质存储设施。该法案对有关地下地热资源管理的法律进行了几项更新,其中包括:!澄清“非公务地下水”不包括“指定地下水”,因为这些条款是在现行法律中定义的;呢免除某些地热操作需要国家工程师的井许可证;呢要求国家工程师通知运营商,以前对拟议井的申请申请的地热操作,并允许运营商有机会要求听证会,如果申请对先前的地热操作造成了物质伤害的关注;呢
败血症期间血液中的CfDNA增加可能是从各种类型的细胞死亡(凋亡和坏死)或细胞损伤中释放出来的(41,42),这在败血症发病机理中是关键作用(43)。然后,cfDNA的丰度可能是败血症诱导的细胞损伤的良好指标,从理论上讲,这与败血症的严重程度相关。的确,由于败血症24小时内CFDNA水平的差异,我们的荟萃分析确定了中等的确定性。与非盐对照或SIRS(ICU病例)相比,败血症患者的CFDNA不仅增加了CFDNA,而且与败血症幸存者相比,CFDNA在脓毒症非活体中也升高。有趣的是,即使在ICU的最早阶段或入院阶段(可能是败血症发作的最接近时间)的CFDNA水平,也能够预测死亡率,如汇总的AUC预测为0.76(95%CI 0.64-0.87)所示);诊所使用的可接受价值(44)。此外,与CFDNA较低的患者相比,入院时最初具有高CFDNA的患者与死亡率更高(28,32)。与没有败血症(ICU病例)的败血症和感染之间的区分(0.80),合并灵敏度(0.81),汇总特异性(0.72)(0.72)和计算DOR(25.03),指示CFDNA作为良好的诊断生物标志物,用于实践(45,46)。较高的CFDNA(与对照组相比)在SIRS患者中,尽管没有可检测到的病原体,但在短期随访期后可能是快速发展成为败血症的早期迹象(23,48)。然而,在败血症与SIRS之间的亚组分析中,败血症歧视的CF-DNA的能力降低了,这是由AUC从0.80(败血症与非sepsis ICU)汇总的0.75(ICU中的Seppsis vs. ICU中的Sirs vs. Sirs vs. ICU中)的代表,支持Sepraps sepis sepis sepis sepis sepis sepis sepis sepis sepis sepis sepis sepis sepis spepis sepis specis spepis specis(47)。同样,某些败血症患者的CFDNA水平较低可能与
遗传害虫管理策略在 20 世纪初被提出,并于 20 世纪中期开始实施,其中昆虫不育技术 (SIT) 是其中的佼佼者 (130、131、202)。在 SIT 中,不育雄性被释放出来与野生雌性交配,随着时间推移,这种技术频繁大规模释放,可以抑制甚至消灭种群。该领域的早期工作依赖于辐射来产生不育突变 (17、131、207)。大规模实施该技术取得了巨大成功,彻底消灭了北美大部分地区的新大陆螺旋蝇 (131),并抑制了其他一些物种 (83、179)。然而,遗传和其他技术挑战阻碍了抑制某些物种的尝试取得成功。在开展这项工作的同时,人们探索了许多其他控制方法,这些方法基于转基因时代之前对害虫遗传学的操作(例如易位和倒位),但总体上并没有取得很大的成功(100)。人们开始思考用于种群管理的遗传技术,特别是那些旨在自我维持的技术,这种思考始于 50 多年前(64, 201),其灵感来自于生命各个领域中越来越多的自然发生的自私遗传元素 [以下称为基因驱动 (120)] 的行为。许多这样的基因驱动是在遗传学领域早期发现的,通常是由于意外的突变率、性别比例偏差或特定基因型的死亡率而偶然发现的。这些驱动有利于它们的传播,而牺牲了基因组中的其他基因。这种行为可能导致这些驱动相对于相应的染色体对应物扩散,即使它们的存在会给携带者带来适应度成本(即降低整个种群的适应度)(78、95、104、178、226)。自然产生的基因驱动在形式和机制上千差万别,包括性别比例扭曲元件、减数分裂驱动元件和毒素-解毒剂系统(3、66、67、104、117、148)、转座元件(157、178、188)、可遗传微生物(62、80、225)和归巢内切酶(37、38)。这些自然基因驱动的潜在机制启发了合成基因驱动系统的创建(120)。
伽玛射线对象:了解伽玛射线与物质的各种相互作用。使用已知能量的伽马射线校准伽马射线闪烁光谱仪,并使用它来测量“未知”伽马射线的能量。使用正电子歼灭辐射来确定电子的质量并观察相关的伽马射线。读数:实验室手册(请参阅补充阅读)“核科学实验” AN34,EG&G ORTEC提供了有关许多本科核试验的背景和技术的精彩动手讨论。所描述的设备类似于实验室中可用的设备。在本文末尾给出了其他读数。设备:NAI:具有集成前置放大器(2),高压电源,堪培拉型号2000电源的TL闪烁体和光电倍增管检测器,NIM BIN,NIM BIN,NIM BIN,CANBERRA 2015A放大器/单通道分析仪模块(2) (PCA-II)CompuAdd 286个人计算机,Analyzer软件,监视器的董事会。背景:在本实验中,您将通过检测腐烂产生的伽马射线来研究核的放射性衰变。γ射线检测是一个多步骤过程:伽马射线进入NAI:TL闪烁体晶体,在其中产生了快速移动的自由电子,进而通过在晶体中行驶时在路径中激发离子而失去能量。这种激发能以各种方式释放出来,其中一种是可见光的发射(荧光)。因此,进入闪烁体的单个高能伽马射线会产生低能光子的闪光。这些光子针对光电倍增管的光敏表面,它们通过光电效应弹出电子。电子被收集在光电培养基中并放大以产生电流脉冲,该脉冲转换为电压脉冲,其高度与光电子的数量成正比,因此与到达管的光子数量成正比,这又与快速电子的初始能量成正比。当放射性源位于闪烁体附近时,光电层流会产生一系列脉冲,每个脉冲对应于单个核的衰变。每个脉冲的幅度与伽马射线释放的电子能量有关。使用单通道分析仪研究这些脉冲。单个通道分析仪(SCA)计数电压脉冲的数量