模拟在粒子和核物理学中起重要作用。它被广泛用于DECOTER设计和实验数据和理论模型之间的比较。在特定上,模拟依赖于蒙特卡洛方法,需要显着的计算资源。尤其是,这种方法不能扩展以满足高光度大型强子对撞机(HL-LHC)运行期间预期的大量数据所产生的增长需求。使用众所周知的仿真软件Geant4捕获的粒子碰撞和相互作用的详细模拟需要数十亿个CPU小时,构成了LHC实验的一半以上的计算源[1,2]。更具体地说,对热量表中粒子阵雨的详细模拟是计算最高的步骤。已经开发了利用重复使用先前计算或测量物理量的思想的模拟方法,以减少计算时间[3,4]。这些方法从专门进行到单独的实验中,尽管它们比完整的模拟更快,但它们的速度不够快或缺乏准确性。因此,粒子物理社区需要使用新的更快的模拟方法来建模实验。模拟热量计响应的可能方法之一是使用深度学习技术。,特别是最近的工作[5]提供了证据,表明可以使用生成性副本网络来效果模拟粒子阵雨。虽然实现了超过100 000倍的速度,但设置非常简单,因为输入粒子为
每个子集都有一个特征性的细胞因子特征,可以在单细胞水平上使用多色流细胞术在单细胞水平上测量,结合了细胞因子的表面表型和细胞内染色,转录因子或信号分子。此外,可以使用BD™细胞量仪阵列(CBA)技术同时定量多个可溶性细胞因子或信号分子。
SOCOMEC解决方案 - 从当前传感器到电量仪,从物联网到能源管理软件 - 由能量性能专家驱动。They meet the requirements of facility managers and operators of commercial, industrial and critical buildings to enable and facilitate: • the measurement of energy consumption, the LGHQWLĺFDWLRQRIVRXUFHVRIH[FHVVFRQVXPSWLRQDQG the generation of awareness amongst occupants as to their impact, • the utilisation of the best available tariffs, utility bill checks and the消费者实体之间的能源计费的准确分配,•反应能量的限制和避免相关关税罚款,•容量管理和电气安装的演变,•通过监视和检测绝缘故障来改善功率可用性。
摘要 - 密封包装是微观计量计保持长期可靠性的关键要求。对于微量光度计的真空包装以获得更高的红外光线传输,需要稀薄的膜片。但是,由于大气的压力差,较薄的隔膜会导致较大的挠度,这可能会影响IR信号的焦点并可能导致机械故障。在本文中,已经根据使用COMSOL和ZEMAX的机械稳定性和光学性能来研究使用薄薄的单晶硅diaphrags作为微量仪阵列密封包装的封装的权衡。光学模拟表明,薄隔膜的弯曲对8到14 µm波长的红外光聚焦具有可忽略的影响。机械模拟表明,具有10×10 mm 2面积的厚度(厚度<70 µm)和一个具有12×12 mm 2面积的膜片(厚度<90 µm)会导致机械故障,并且设计的diaphragm厚度必须掺入这些值。
方法:通过采用统一的GWA摘要数据,涵盖了GWAS目录中的731个免疫特征(从GCST0001391到GCST0002121的登录编号),我们的分析集中于淋巴细胞群的流动量仪,鉴定3,757 sardinians,以识别3,757 sardinians,以识别3,757 sardinians,以识别3,757 Sardinians,以识别3,757 Sardinians。此外,我们从精神病基因组学联盟中获得了总结GWAS统计数据,以评估ADHD的遗传预测。采用ADHD2019的研究(2019年GWAS ADHD数据集的20,183例病例和35,191例对照)和ADHD2022(38,691例病例和275,986例对照,来自2022 GWAS ADHD Dataset)。通过检查全基因组关联信号,我们使用全面的ADHD2022数据集中确定了循环免疫细胞和ADHD之间共享遗传方差。我们主要利用了孟德尔随机研究和敏感性评估中的反向差异加权(IVW)和加权中值方法来评估多样性和多效性。
搜索使用140 fb - 1在√𝑠= 13 = 13 TEV的proton-Proton碰撞中,搜索在辐射量激量激量仪中腐烂的中性长颗粒(LLP)。分析由三个通道组成。第一个目标配对生产的LLP,其中至少一个LLP的产生具有足够低的增强,以至于其衰减产物可以作为单独的喷气机解析。第二和第三通道的目标LLP分别与衰减衰变的𝑊或𝑍玻色子相关。在每个通道中,不同的搜索区域针对不同的运动学制度,以涵盖广泛的LLP质量假设和模型。没有观察到相对于背景预测的事件过多。higgs玻色子分支分支到成对的一对大于1%的强烈衰减中性LLP,在95%的置信度下排除在95%的置信度下,适当的衰减长度在30 cm至4.5 m的适当范围内,这取决于LLP质量,这取决于LLP质量,这是先前搜索的Hadronic Caloremeter搜索量的三个因素。与横截面高于0.1 pb的𝑍玻色子相关的长寿命深光子的产生被排除在20 cm至50 m的范围内的深色光子平均衰减长度,从而通过数量级提高了先前的Atlas结果。最后,Atlas首次对长期的光轴轴向粒子模型进行了探测,生产横截面高于0.1 Pb,在0.1 mm至10 m范围内排除了0.1 Pb。
表面工程是一个多学科领域,侧重于修改和增强材料表面的特性,以实现所需的功能和性能。它包含了一系列旨在改变材料表面特征而不显着影响其批量特性的技术和过程。表面工程的目的是改善属性,例如硬度,耐磨性,耐腐蚀性,生物相容性,润滑性和电导率等。摘要探讨了表面工程的基本原理,技术和应用。首先要强调各个行业和技术进步的表面特性的重要性。摘要然后讨论表面工程中采用的不同方法,包括物理和化学过程,例如沉积,扩散,离子植入和通过涂层或表面处理。抽象探讨了表面分析技术评估和表征修饰表面的重要性。它强调使用高级分析工具,例如扫描电子显微镜,X射线衍射,原子力显微镜和表面经量仪来研究表面形态,化学组成和机械性能。摘要还展示了各个部门的表面工程的广泛应用,例如航空航天,汽车,电子,生物医学和能源行业。抽象强调了表面工程作为一个关键领域的重要性,弥合了材料科学与工程之间的差距。它突出了表面工程在改善符合极端条件,增强产品功能和启用新技术的组件的性能和耐用性方面的作用。它展示了如何操纵材料的表面特性如何导致各个行业的重大进步,最终推动创新和技术进步。