我是里雅斯特大学物理系副教授,也是 CNR-INO 的副研究员。我领导着一个在里雅斯特新成立的实验小组(7 名团队成员),研究具有人工量子系统的多体物理学,重点研究关联多轨道费米子系统中的非平衡动力学和传输。我在超冷原子的量子模拟方面的专业知识得到了多次受邀报告、国际合作和在高影响力国际期刊上发表的论文的认可。我目前的研究兴趣包括:超冷量子气体的量子多体物理学 - 强关联量子多体系统、强相互作用费米气体实验、量子杂质、量子传输和非平衡多体动力学、超冷费米气体中的超流动性和磁性、光晶格中的哈伯德物理学、SU(N) 对称费米子模型。实验原子物理和光学技术——激光冷却和捕获、费什巴赫共振、射频精密光谱、光钟光谱、光晶格、任意光势、量子气体显微镜。量子信息和量子光学——光镊阵列、中性原子量子信息处理、光原子相互作用中的集体效应、连续变量量子光学、光量子通信和 QKD。
通过将分子系统强烈耦合到量化辐射1-12的新化学重新启动方面的最新进展刺激了分子量子电动力学的理论发展13-29。尤其是,超出弱的互动状态(例如Ultra-Strong耦合28(USC)和深度耦合30(DSC)制度)的光线相互作用通常是理论研究的活跃领域13,18,20,30-30-37。这种耦合方案导致了新的令人兴奋的物理素质,无法用广泛使用的近似轻质的汉密尔顿人(例如Rabi和Jaynes-Cumming Hamiltonians)18,19,21,21,24,38 Quan-Tum Optics来描述。以这种方式,至关重要的是,通过了解每种代表的不同好处和缺点,从战略上选择要使用哪种轻质的哈密顿量来建模系统。由于这一空腔量子电动力学(CQED)是量子光学和物理化学的高度跨学科图,因此可以为新手的那些人混淆哈密顿量的适当选择。通常,Hamiltonians和确切的近似水平之间的关系尚不清楚。在这篇综述中,我们试图将所有主要的仪表和在该场所中常用的所有主要仪表和代表置于一个地方,并以详细的派生相互关联,从而有助于弥合量子光学和物理化学之间的差距。这样,教派。ii引入了不同形式的Hilbert Space Hamiltonian,这些形式来自基本的最小耦合汉密尔顿。然后,在教派中。在教派中。然后,教派。本次审查是组织的,使得与单个模式结合的物质的精确汉密尔顿 - 最初是对耦合的,并且以下三个部分层在相邻上,一直到半经典的临时。iii,考虑到整个希尔伯特空间的截断,并讨论了解决由这种预测引起的仪表歧义的各种方法的讨论。iv,简化的量子光学模型相对于截短的汉密尔顿人而言是针对和基准的。v提供了与浮标理论的CQED方法的简短比较,这是半经典近似。使用此路径中的见解。vi将形式主义扩展到具有多种模式和许多分子的系统的CQED HAMILTONIAN的更具一般形式的形式。未来的观点和分析是在各节中提供的。vii。
• 电子、原子和分子的碰撞、高电荷离子、天体物理过程 • 原子和分子光谱、光诱导过程 • 飞秒和阿秒物理学、反应动力学、相干控制、强场 • 团簇、纳米粒子、生物分子、表面相互作用和自组装 • 冷和超冷原子、分子和离子、简并量子气体、超冷等离子体 • 基础物理学、精密测量、原子干涉和原子钟 • 量子技术、量子光学、腔 QED、量子信息
小组 1:量子互联网需要什么 主持人:Stephanie Wehner - 量子互联网研究所所长、代尔夫特理工大学 QuTech 发言人:Saikat Guha - 亚利桑那大学国家科学基金会量子网络工程研究中心主任 Elham Kashefi - 国家量子计算中心首席科学家 Harald Hauschildt - 欧洲航天局 ARTES ScyLight 项目经理 Stephen DiAdamo - 思科研究科学家 Hugues de Riedmatten - 光子科学研究所 (ICFO) 量子光学组组长
两级发射器与光腔耦合的两层发射器取决于与状态周围密度的相互作用[1]。与弱耦合方案形成鲜明对比的是,发射器表现出percell增强的自发发射[2,3],发射异常的发射极强度g超过了发射机衰变速率(γ)和空腔损失速率(κ)与量子的量化量的量子和量子均与Emtrent的量子交换。它产生了光学响应中的狂犬病分裂,例如散射或光致发光(PL)光谱[4-8]。在这种强烈的耦合系统中,量子杂交状态的操作会诱导多种量子光学响应,从而导致量子光学设备的广泛应用[9-12]。在介电腔中,衍射量最大的模式体积分别需要高质量(Q)因子(Q)和低温才能实现强耦合,分别在κQ-1和γk b t之后[13-15]。高Q空腔导致发射极和腔之间的狭窄光谱重叠,即狭窄的呼声条件,以保持强耦合。这些约束显着构成了量子杂交状态的可控性,因此限制了强耦合方案中量子电动力现象的研究。最近,即使在室温下,由于其纳米级模式的体积,等离子腔的平台也达到了等离子和激子之间有效的强耦合[5,7,16]。
关于我们! SCOP-2024 是光学和光子学年度学生会议的第九届。多年来,SCOP 一直是交换科学思想的渠道,促进了从事光学各个领域的学生、研究人员和科学家之间的合作。 SCOP-2024 为期三天,将汇集各种思想和讨论,这些思想和讨论存在于光学研究领域的前沿,例如非线性光学、超快光学和量子光学。该计划还包括讨论 PRL 的研究、参观 PRL 的各个光学科学实验室以及与 OPTICA 学生分会的互动。
在本期特刊中,我们希望接受与物理学中的量子信息熵主题相关的未发表的投稿,无论是原创还是评论。这是一个广泛的主题,从量子通信和量子计算等应用导向学科到基础物理学、量子热力学、多体系统中的量子信息的发展等。感兴趣的主题包括但不限于:- 量子熵 - 量子信息处理 - 量子纠缠 - 量子相干性 - 量子计算 - 量子密钥分发 - 量子热力学 - 量子光学
是向学生介绍当今正在使用的主要实验平台,包括腔Qed和原子团的历史主力,以及即将到来的范式,例如原子 - 纳米光界面界面,量子光学力学和超导电路QED。我们还将详细调查量子技术中主要应用的几种重要协议,例如光量子记忆,光子 - 光子大门,相干的微波链接到光学链接和量子计量学,并了解如何忠实地实施它们的基本限制。
2025年3月13日组织:京都大学系:集成辐射与核科学的投影研究,综合辐射与核科学研究所,研究领域:材料科学,量子光学,开发光谱法。核心任务:使用核方法(例如摩斯鲍尔光谱和相关光谱法的开发)对高级材料科学和量子光学的调查。变更范围:京都大学的运作(教育,研究和行政管理)。工作职位:助理教授(1位)资格和必需技能:成功的候选人应获得
jena的弗劳恩霍夫应用程序和精密工程IOF是光子学领域的领先开发商。我们进行应用研究,并专门研究创新的光学系统来控制光 - 从发电和操纵到其应用。我们提供涵盖整个光子过程链的服务 - 从光学机械和光电系统设计到制造自定义特定解决方案和原型。作为光子学转型的关键参与者,我们当前的研究活动着重于微技术和纳米技术,安全人机相互作用的光学技术,自由形式技术,光纤激光系统和量子光学。