需要量子计算。对于许多实际问题,仍然需要更快的计算。例如,如果我们能够处理更多数据,目前深度学习的惊人成功(参见 [2])可能会更加惊人。计算机处理信息的能力受到限制,其中一个原因是所有速度都受光速限制。即使以光速,将信号从 30 厘米大小的笔记本电脑的一侧发送到另一侧也需要 1 纳秒 - 在此期间,即使是最便宜的当前计算机也要执行至少 4 次操作。因此,为了加快计算速度,有必要使计算机组件更小。这些组件(例如存储单元)已经由少量分子组成。如果我们将这些细胞做得更小,它们将只由几个分子组成。为了描述如此小物体的行为,有必要考虑量子物理学 - 微观世界的物理学;参见 [1, 4]。因此,计算机需要考虑量子效应。
Ultrastrong中的混合量子系统,在深度,耦合方案中甚至更多地表现出异国情调的物理现象,并保证在量子技术中采用新的应用。在这些非驱动性方案中,值 - 谐振系统具有纠缠的量子真空,在谐振器中具有非零的平均光子数,在该谐振器中,光子是虚拟的,无法直接检测到。真空场能够诱导分散耦合探针量子的对称破裂。我们通过实验观察到由一个集体元素超导的谐振器与浮标量子偶联的辅助XMON人工原子的平均对称性破裂。此结果开辟了一种实验探索在深度耦合方面出现的新型量子效应效应的方法。
我们对由许多相同的量子单元组成的量子电池在噪声下的能量回收效率进行了理论分析。虽然利用量子效应加速电池充电过程的可能性已被广泛研究,但为了将这些想法转化为工作设备,评估量子电池元件在接触环境噪声时存储相的稳定性至关重要。在这项工作中,我们将这个问题形式化,引入了一系列操作上定义良好的性能系数(工作电容和最大渐近工作/能量比),这些性能系数衡量了从由大量相同和独立元素(量子单元或 q 单元)组成的量子电池模型中回收有用能量所能达到的最高效率。对于能量存储系统经历相位失调和去极化噪声的情况,给出了这些量的明确评估。
钻石成为研究量子效应的主要宿主材料。晶格中的人造缺陷,称为氮呈(NV)中心,允许研究磁矩的量子性质。多亏了基础物理学,这些研究可以在室温下进行。局部电子状态的行为与分子系统相似,并且通过绿光激发在光学上可寻址。系统以红色的荧光响应。收集的荧光强度取决于电子自旋的状态。可以用微波辐射来操纵状态,这使科学家能够检测到磁共振,甚至解决了在环境条件下的单个缺陷。这使NV中心成为教育自旋物理,EPR,NMR,单光子发射器,共聚焦显微镜和量子应用(例如量子传感)的完美学习和学习平台。
量子传输3、DNA中的质子隧穿4和光合作用系统中的能量传递。5作为多体问题,由于希尔伯特空间维数呈指数增长且环境自由度数量巨大,开放量子系统的精确表征并不可行。然而,通过追踪环境自由度TrE($)或在经典相空间内处理环境6和/或系统,该问题变得更容易处理。7,8为了研究开放量子系统,迄今为止已开发出多种方法,从完全经典的9,10到完全量子方法。11 – 18虽然每一种方法都取得了成功,但它们受到许多限制的阻碍,例如无法考虑量子效应,或者由于稳定性约束需要采用非常小的离散化步骤而需要大量计算资源。此外,环境影响的综合集成,特别是在高度非马尔可夫场景中,对计算开销有很大影响。
1 引言 量子计算机是一项新兴技术,有望彻底改变计算科学 [3, 13, 36, 43]。量子计算机使用量子比特作为信息处理单位,可以利用叠加和纠缠等纯量子现象,与某些应用领域的传统计算机相比,实现指数级的加速和内存减少。量子计算机最初设想用于模拟量子系统 [20],后来经过严格证明,它在该领域具有计算优势 [2, 35, 65]。事实上,量子材料模拟被视为近期量子计算机最有前途的应用之一 [9]。量子材料是指在微观层面上的量子效应导致宏观层面上出现奇异相或其他突现行为的材料 [29]。过去十年来,量子材料研究的蓬勃发展表明,这类材料对于下一代
图灵机能模拟人类思维吗?如果假设丘奇-图灵论题是正确的,那么图灵机应该能够模拟人类思维。在本文中,我将通过提供强有力的数学论据来反驳丘奇-图灵论题,以此来挑战这一假设。首先,我将说明,有些决策问题对于人类来说是可计算的,但对于图灵机来说却是无法计算的。接下来,我将通过一个思想实验来说明,配备图灵机作为控制单元的人形机器人无法执行所有人类可完成的物理任务。最后,我将说明,涉及顺序量子波函数坍缩的量子力学计算设备可以计算图灵机无法计算的序列。这些结果推翻了丘奇-图灵论题,并得出了图灵机无法模拟人类思维的结论。结合这些结果,我认为,人类大脑中的量子效应是人类思维计算能力的基础。
渠道容量的概念捕获了可以通过给定的通信渠道传输的信息率,让它为量子或经典,给定一系列有关该通信如何发生的进一步规则。在量子通信的背景下,自然而然地,量子通道是关注的重点。我们将保持相对较短的时间,但仍定义主要数量并陈述了几个关键结果。还有几个引人注目的见解,我们将对这些见解进行评论。我们还将以此为借口正确定义量子协议的渐近率,包括定义可蒸馏的纠缠的定义,可以将其视为上一章的附录。实际上,从历史上看,Quantum Shannon理论是量子信息理论的第一个子领域,当时仍然认为量子效应是通信任务的限制,而不是可以将它们用于用户的优势。它仍然是一个积极探索的领域,主要是从数学物理学的角度来看。
我的研究活动主要基于量子动力系统的理论分析和数值分析。自攻读博士学位以来,我的研究主要集中在以下几个主题上(按时间顺序):i)噪声作为量子信息科学的障碍(PhD)[6],ii)噪声的记忆效应和空间相关性的理论表征(EU MC-IEF)[6,13],iii)生物分子系统中的量子效应以及噪声在量子传输中的反直觉优势作用[14-15],iv)在原子系统中观察类似效应[9,10](EU MC-CIG),v)利用光子平台模拟噪声辅助量子传输现象(FIRB-MIUR)[1,3,4,7,12],vi)超快速光谱和天然和人工光收集复合物的最优控制[5,11],vii)基于测量和相干控制以保护脆弱原子的动力学芯片设备[2, 8]。