这是以下文章的同行评审版本:An, S., Liao, Y., Shin, S. & Kim, M. (2022)。黑锗光电探测器的外部量子效率超过 160%。Advanced Materials Technologies,7(1),2100912‑,最终版本已在 Advanced Materials Technologies 上发表。本文可根据 Wiley 自存档版本使用条款和条件用于非商业用途。
摘要:硝酸氢硼(HBN)中带负电荷的硼空位(V B-)缺陷,其具有光学可寻址的自旋态由于其在量子传感中的潜在使用而出现了。非常明显地,当将其植入距HBN表面的纳米尺度距离时,V b-可以保留其自旋相干性,并有可能启用超薄量子传感器。但是,其低量子效率阻碍了其实际应用。研究报告了提高血浆v B-缺陷的总量子效率。但是,迄今为止报告的最多17次的总体增强功能相对较小。在这里,我们证明了使用低损坏纳米捕获天线(NPA)的V B-的发射增强。观察到总体强度增强高达250次,对应于NPA的实际发射增强约为1685次,以及保留的光学检测到的磁共振对比度。我们的结果将NPA耦合的V B-缺陷作为高分辨率磁场传感器,并为获得单个V B-缺陷提供了有希望的方法。关键字:二维材料,HBN,血浆,纳米腔,旋转缺陷,量子传感
长波长发光材料的严重猝灭是制约OLED发展的重要瓶颈,例如Zhang等报道了一系列新型DA型橙色和红色荧光材料,其外量子效率(EQE)仅为3.15%,发射峰在592nm,而外量子效率(EQE)仅为2.66%,发射峰在630nm。16以三苯胺和N,N-二苯基苯胺为结构发光材料的橙色器件的最大EQE较低,为3.42%。17Yang等也报道了一种以吡啶-3,5-二腈为核心的TADF橙色发光材料,其电致发光(EL)峰值在600nm,其最大EQE为9.8%,18远低于蓝色和绿色器件。具有特色 DA 结构的 HLCT 基材料可以通过快速“热激子”通道从高位三线态 T m 实现逆向系统间窜改 (RISC) 到高位单线态 S n 。由于特殊的杂化局域电子 (LE) 和电荷转移 (CT) 激发态,这种独特的特性使 HLCT-OLED 具有高 EQE 和不明显的效率下降。19
六方氮化硼 (hBN) 已成为一种有前途的超薄单光子发射器 (SPE) 主体,在室温下具有良好的量子特性,使其成为集成量子光子网络的理想元素。在这些应用中使用这些 SPE 的一个主要挑战是它们的量子效率低。最近的研究报告称,在嵌入金属纳米腔内的多层 hBN 薄片中集成一组发射器(例如硼空位缺陷)时,量子效率可提高两个数量级。然而,这些实验尚未扩展到 SPE,主要集中在多光子效应上。在这里,研究了由在超薄 hBN 薄片中创建的 SPE 与等离子体银纳米立方体 (SNC) 耦合组成的混合纳米光子结构的量子单光子特性。作者展示了 SPE 特性 200% 的等离子体增强,表现为 SPE 荧光的强烈增加。这种增强可以通过严格的数值模拟来解释,其中 hBN 薄片与引起等离子体效应的 SNC 直接接触。在室温下使用紧凑的混合纳米光子平台获得的强而快速的单光子发射对于量子光通信和计算中的各种新兴应用非常有用。
其在光伏应用领域的研究引起了人们的兴趣,因为它们的量子效率已经达到了 25.5% [1],而且还扩展到辐射传感 [2,3] 和各种光电设备。[4–7] 达到高质量 MAPbI 3 、FAPbI 3 和 CsPbI 3 单晶的极限,与 MA、FA 和铯 (Cs) 阳离子混合物的组合结构成为最先进的钙钛矿材料,提高了量子效率并将结构稳定性从几天延长到几个月。[2,8–10] 由于基本物理性质接近其母结构,因此所提出的 FA 0.9 Cs 0.1 PbI 2.8 Br 0.2 可作为铅卤化物钙钛矿类的有效模型系统。与传统的 III-V 和 II-VI 半导体相比,钙钛矿在某种意义上具有反转的能带结构:价带 (VB) 态由 s 轨道形成,而导带 (CB) 态由 p 轨道贡献。强自旋轨道耦合,特别是 Rashba 效应 [11–14] 也会交换电子和空穴的自旋特性。[15,16] 因此,与晶格核的超精细相互作用由空穴而不是电子主导。钙钛矿能带结构为光学跃迁提供了清晰的极化选择规则,因此结合
摘要:CMOS光二极管已在微系统应用中广泛报道。本文使用COMSOL多物理学对P – N结光电二极管的设计和数值模拟,用于三种CMOS技术(0.18 µm,0.35 µm,0.35 µm和0.7 µm)和三个不同的P – N交界结构:N+/P-Substrate,P-Substrate,P+/N-N-Well/n-Well/n-Well/well/p-Subsulate。对于这些模拟,根据不同的技术设定了深度连接和掺杂剂浓度。然后,每个phodiode均在分光光度法上进行了分光光度法的特征,响应性和量子效率。获得的数值结果表明,当需要可见的光谱范围时,0.18和0.35 µM CMOS技术是具有效率最高峰的最高峰的技术,与0.7 µM技术相比。此外,比较了三个最常见的P – N垂直连接光电二极管结构。N+/p-Substrate Juints Photodiode似乎是可见范围内具有最高量子效率的一种,与文献一致。可以得出结论,光电二极管的特征曲线和暗电流值与文献中的报告一致。因此,这种数值方法允许预测光电二极管的性能,帮助在其微加工之前为每个必需的应用程序选择最佳的结构设计。
ZrO 2 和 HfO 2 NC 均用作光学活性镧系元素离子(例如铕)的主体。1,14-18 氟化物(例如 NaYF 4 和 NaGdF 4 )是另一类广泛用作镧系元素主体的纳米晶体,用于上转换和下转换。19-23 在氟化物体系中,合成工艺已经很成熟,可以在纳米晶体内精确定位掺杂剂,并在掺杂核上生长未掺杂的壳。后者产生核/壳结构,这在半导体纳米晶体(量子点)领域是首创的,用于防止激发电子和空穴与表面陷阱相互作用。24、25 同样,壳层保护镧系元素免受表面效应的影响,从而提高上转换和下转换过程的量子效率。 26 此外,在镧系元素掺杂的氟化物的情况下,多层结构可提供受控的能量级联。27 更高的量子效率加上较长的寿命使其可用于时间门控荧光成像等。15、28 由于生产具有复杂(例如核/壳)结构的胶体稳定氧化物纳米晶体的合成挑战,氧化物主体的使用范围较窄。29 但是,氧化物主体的化学性质更稳定,而氟化物可溶解在高度稀释的水介质中。30
摘要:研究了多孔硅 (PS) 表面二氧化硅 (SiO 2 ) 阳极形成过程中的光伏效应,旨在开发一种潜在的钝化技术,实现高效的纳米结构硅太阳能电池。PS 层是在含氢氟酸 (HF) 的电解质中通过电化学阳极氧化制备的。在室温下,在 HCl/H 2 O 溶液中通过自下而上的阳极氧化机制在 PS 表面形成阳极 SiO 2 层。通过调节阳极氧化电流密度和钝化时间来精确控制表面钝化的氧化层厚度,以在 PS 层上实现最佳氧化,同时保持其原始纳米结构。PS 层微观结构的 HRTEM 表征证实了 PS/Si 界面处的原子晶格匹配。研究了光伏性能、串联电阻和分流电阻对钝化时间的依赖关系。由于 PS 表面钝化充分,阳极氧化时间为 30 秒的样品实现了 10.7% 的最佳转换效率。外部量子效率 (EQE) 和内部量子效率 (IQE) 表明由于 PS 的抗反射特性,反射率显著下降,而由于 SiO 2 表面钝化,则表明性能优越。总之,PS 太阳能电池的表面可以通过电化学阳极氧化成功钝化。
这种材料在有机发光领域具有极高的应用前景。例如,由于量子或电介质限制效应,光学带隙随着有机间隔物之间八面体层数的减少而变宽。[3,4] 最近,发现表面态是由层状钙钛矿的局部结构扭曲引起的。[5] 由于高发射量子效率和光学特性的大可调性,人们致力于利用准二维/三维钙钛矿[6–8]和低维钙钛矿制造发光二极管 (LED)。[9–14] 典型的准二维/三维和低维钙钛矿基 LED 输出高亮度 10 3 – 10 5 cd m − 2 以及 10–20% 的外部量子效率。 [9,12,15,16] 支撑如此高性能的发射机制有多种物理原因。例如,有人提出,低维钙钛矿中激子的高结合能起着重要作用,促进了辐射复合,从而产生了高发射量子产率。[17] 其他研究将高效发射归因于薄膜上不同厚度(或 n 数)的量子阱形成的能量景观,这些量子阱将电荷载流子级联到能量最低的发射位点进行复合。[14]
超荧光 (HF) 是一种相对较新的现象,利用两种发光体之间的激子转移,需要仔细地成对调整分子能级,被认为是开发新型高效 OLED 系统的关键一步。迄今为止,报道的具有所需窄带发射但外部量子效率中等 (EQE <20%) 的 HF 黄光发射体寥寥无几。这是因为尚未提出一种系统性策略,将 Förster 共振能量转移 (FRET) 和三线态到单线态 (TTS) 跃迁作为有效激子转移的互补机制。在此,我们提出了一种合理的方法,通过细微的结构修改,可以获得一对由相同供体和受体亚基构建的化合物,但这些双极片段之间的通讯方式不同。 TADF 活性掺杂剂基于与咔唑部分的氮相连的萘酰亚胺支架,通过引入额外的键,不仅导致 π 云扩大,而且还使供体变硬并抑制其旋转。这种结构变化可防止 TADF,并引导带隙和激发态能量同时进行 FRET 和 TTS 过程。利用所提出的发射器的新型 OLED 设备表现出出色的外部量子效率(高达 27%)和较窄的半峰全宽(40nm),这是能级排列非常好的结果。所提出的设计原理证明,只需进行少量结构修改即可获得适用于 HF OLED 设备的商业染料。