§ 成像 § 传感(磁性) § 材料公司(例如金刚石) § 组件、设备、系统和服务 § 新参与者,包括初创企业和分拆企业 § “只需添加量子”:拥有现有产品的成熟参与者,
发光碳等离子体的超快(5 纳秒)照片揭示了真空中激光蒸发石墨如何合成非晶态金刚石薄膜,这是一种透明、超硬的纯碳形式(见第56-58 页)。假彩色图像中显示的高能碳离子球以每秒 4,000,000 厘米的速度移动。当材料在室温下收集形成薄膜时,这种能量有助于将普通石墨转化为非晶态金刚石。这是 ORNL 1996 年的众多研究亮点之一,在本期《实验室状况》中介绍。门控增强 CCD 阵列摄影由 ORNL 固态部门的 David B. Geohegan 和 Alex A. Puretzky 完成。封面由Allison Baldwin,ORNL 计算、信息和网络部门的平面设计师。
具有 CN 4 四面体三维骨架的碳氮化物是材料科学的伟大梦想之一,预计其硬度将高于或与金刚石相当。经过 30 多年的努力,仍然没有提供其存在的确凿证据。本文报道了在激光加热的金刚石压砧中高压高温合成三种碳氮化合物 tI 14-C 3 N 4 、hP 126-C 3 N 4 和 tI 24-CN 2 。利用同步加速器单晶 X 射线衍射解析和细化它们的结构。物理性质研究表明,这些强共价键合的材料具有超不可压缩和超硬的特性,还具有高能量密度、压电和光致发光特性。新型碳氮化物在高压材料中是独一无二的,因为它们是在 100 GPa 以上产生的,并且可以在环境条件下在空气中回收。
对 Smiths Detection Target-ID 便携式傅里叶变换红外 (FTIR) 光谱仪进行了技术审查。审查的目的是确定 Target-ID 是否可用作一线筛选技术,以识别药品 (DP) 中是否存在活性药物成分 (API)。红外 (IR) 筛选技术测量红外辐射的吸收率,对极性键最敏感,从而使 IR 技术对功能团的响应最灵敏。IR 仪器采用金刚石衰减全反射 (ATR),因为它坚固耐用且易于使用。通过将样品材料压在金刚石 ATR 元件上,IR 探测光束可穿透表面约 1-5 μm。液体样品可以简单地放在 ATR 元件上。虽然其他 IR 技术需要稀释样品,但 ATR 的低穿透深度使得“按原样”样品分析成为可能。
§ 金刚石、碳化硅(SiC)和六方氮化硼(hBN)拥有各种光学可及的自旋活性量子中心 § 在环境条件下具有优异的相干特性(“室温下的量子比特”) § 由于塞曼分裂,缺陷的能级结构对磁场高度敏感
• 兴奋:单一 CNT 材料的性能在强度上优于钢,在电导率上优于铜,在热导率上优于金刚石 • 现实:CNT 组件的性能会降低 • 布线的挑战在于提高 CNT 组件的性能——电线、纱线
业界越来越倾向于采用三维 (3D) 微电子封装,这要求开发新的创新型故障分析方法。为此,我们的团队正在开发一种称为量子金刚石显微镜 (QDM) 的工具,该工具利用金刚石中的一组氮空位 (NV) 中心,在环境条件下同时对微电子进行宽视野、高空间分辨率的矢量磁场成像 [1,2]。在这里,我们展示了 8 nm 工艺节点倒装芯片集成电路 (IC) 中的二维 (2D) 电流分布和定制多层印刷电路板 (PCB) 中的 3D 电流分布的 QDM 测量结果。倒装芯片中 C4 凸块发出的磁场在 QDM 测量中占主导地位,但这些磁场已被证明可用于图像配准,并且可以减去它们以分辨芯片中微米级相邻的电流轨迹。通孔是 3D IC 中的一个重要组件,由于其垂直方向,因此仅显示 B x 和 B y 磁场,而使用传统上仅测量磁场 B z 分量(与 IC 表面正交)的磁强计很难检测到这些磁场。使用多层 PCB,我们证明了 QDM 能够同时测量 3D 结构中的 B x 、B y 和 B z 磁场分量,这对于在电流通过层间时解析通孔磁场非常有利。两个导电层之间的高度差由磁场图像确定,并且与 PCB 设计规范一致。在我们最初使用 QDM 为复杂 3D 电路中的电流源提供更多 z 深度信息的步骤中,我们证明了由于麦克斯韦方程的线性特性,可以从整个结构的磁场图像中减去各个层的磁场图像。这允许从设备中的各个层中分离信号,该信号可用于通过求解 2D 磁逆来映射嵌入式电流路径。这种方法提出了一种迭代分析协议,利用神经网络对包含各种类别的电流源、隔离距离和噪声的图像进行训练,并结合 IC 的先验信息,
摘要 金刚石中的氮空位 (NV) 缺陷中心是量子传感和量子计算应用的关键。它们在金刚石晶格中产生局部电子态,在光激发后具有不同的群体弛豫路径,最终使其具有独特的性能。已知缺陷存在于两种电荷状态:中性和负电荷状态,分别具有一个和两个已知的光学活性电子跃迁。在这里,我们报告了在两种电荷状态下观察到的大量迄今未被发现的激发电子态,这可以通过光谱中红外到紫外部分的明显光学跃迁来证明。通过使用瞬态吸收光谱监测光激发后 NV 中心的电子弛豫来观察这些跃迁,直接探测在飞秒到微秒的时间尺度上发生的瞬态现象。我们还首次探究了从 NV − 的 3 E 态到附近的单取代氮缺陷 (N s ) 的电子转移动力学,这导致了众所周知的 NV 光致发光猝灭效应。
宽带隙半导体 SiC 和 GaN 已经作为功率器件商业化,用于汽车、无线和工业电源市场,但它们在太空和航空电子应用中的应用受到重离子暴露后易发生永久性性能退化和灾难性故障的阻碍。这些宽带隙功率器件的太空认证工作表明,它们易受无法屏蔽的高能重离子空间辐射环境(银河宇宙射线)的损坏。在太空模拟条件下,GaN 和 SiC 晶体管在其额定电压的约 50% 下表现出故障敏感性。同样,在重离子单粒子效应测试条件下,SiC 晶体管容易受到辐射损伤引起的性能退化或故障,从而降低了它们在太空银河宇宙射线环境中的实用性。在 SiC 基肖特基二极管中,在额定工作电压的 ∼ 40% 时观察到灾难性的单粒子烧毁 (SEB) 和其他单粒子效应 (SEE),并且在额定工作电压的 ∼ 20% 时漏电流出现不可接受的下降。超宽带隙半导体 Ga 2 O 3 、金刚石和 BN 也因其在电力电子和日盲紫外探测器中的高功率和高工作温度能力而受到探索。从平均键强度来看,Ga 2 O 3 似乎比 GaN 和 SiC 更能抵抗位移损伤。金刚石是一种高度抗辐射的材料,被认为是辐射探测的理想材料,特别是在高能物理应用中。金刚石对辐射暴露的响应在很大程度上取决于生长的性质(自然生长与化学气相沉积),但总体而言,金刚石对高达几 MGy 的光子和电子、高达 10 15(中子和高能质子)cm − 2 和 > 10 15 介子cm − 2 的辐射具有抗辐射能力。BN 对高质子和中子剂量也具有抗辐射能力,但由于中子诱导损伤,h-BN 会从 sp 2 杂化转变为 sp 3 杂化,并形成 c-BN。宽带隙和超宽带隙半导体对辐射的响应,尤其是单粒子效应,还需要更多的基础研究。© 2021 电化学学会(“ ECS ” )。由 IOP Publishing Limited 代表 ECS 出版。[DOI:10.1149/2162-8777/ abfc23 ]