单晶金属纤维的成本效益,多功能和快速沉积对于从催化,等离子体,电化学和光电子学到模板,外延底物和集成纳米制造的广泛应用至关重要。高晶体质量通常意味着低增长率,这使得通过常规方法实现超过1 µm的厚度的挑战。我们显示了MGO底物上表面纳税单晶Au,Ag和Cufim的宽敞空间升华。我们在小于1H的厚度中证明了10 µm的厚度,同时在一系列低索引晶体膜方向上保持低5 nm RMS的表面粗糙度。我们表明,可以通过基于“视线”升华的简单模型来捕获结果,该模型可作为预测工具,并提供了讨论更广泛的潜力以及这种方法的局限性的基础。
摘要:单量子发射器与共振光学/纳米腔之间的强耦合对理解光和物质相互作用是有益的。在这里,我们提出了放置在金属膜上的等离子体纳米annana,以实现纳米类动物中的超高电场增强功能和超小的光学模式。通过数值模拟和理论计算详细研究了单个量子点(QD)和设计结构之间的强耦合。当将单个QD插入银纳米annna的纳米含量中时,散射光谱显示出真空狂犬分裂的分裂和抗骨骼的表现非常大,可以在散射光谱中通过优化纳米坦纳的厚度来实现。我们的工作显示了在单个量子发射极限制下增强光/物质相互作用的另一种方法,这对于许多纳米量和量子应用可能很有用。
这是被接受出版的作者手稿,并且已经进行了完整的同行评审,但尚未通过复制,排版,分页和校对过程,这可能会导致此版本和记录版本之间的差异。请引用本文为doi:10.1002/aelm.202100970。本文受版权保护。保留所有权利。
这是被接受出版的作者手稿,并且已经进行了完整的同行评审,但尚未通过复制,排版,分页和校对过程,这可能会导致此版本和记录版本之间的差异。请引用本文为doi:10.1002/aelm.202100970。本文受版权保护。保留所有权利。
铜金属由于其低电阻率和对电子的高电阻性而高度偏爱微电子的相互作用。[1]微电子设备中最小特征的尺寸计划到2022年达到3 nm限制,[2]设定了越来越严格的需求,以使该技术沉积该设备制造的连续低电阻式CUFILMS。原子层沉积(ALD)是一种基于相互脉冲前体的领先的气相薄膜技术 - 是微电子行业的理想选择,因为它固有地提供了高度的相结合薄膜,而不是复杂的几何形状和高光谱比率结构,并且可以使用高含量比率结构,并且可以覆盖厚度较高。[3] Challenge是为了找到行业,有效和可靠的ALD
摘要:基于Zn的金属的激光粉末床融合(LPBF)具有产生定制的可生物降解植入物的突出优势。然而,在Zn激光熔化期间发生了大规模蒸发,因此调节激光能量输入和气体屏蔽条件以消除LPBF过程中蒸发烟雾的负面影响成为一个关键问题。在这项研究中,建立了两个数值模型,以模拟扫描激光与Zn金属之间的相互作用以及屏蔽气流与蒸发烟雾之间的相互作用。第一个模型通过将蒸发对能量,动量和质量的保护作用进行影响,预测了不同激光输入的蒸发率。以蒸发速率作为输入,第二个模型通过采取气体循环系统的效果,包括几何设计和流量速率,预测了在屏蔽气流的不同条件下蒸发烟雾的消除效果。在涉及足够激光输入和优化的屏蔽气流的情况下,在LPBF过程中,蒸发烟雾有效地从加工室中删除。此外,通过比较纯锌和钛合金的LPBF来讨论表面质量致密性的影响。已建立的数值分析不仅有助于找到基于Zn的金属LPBF的足够激光输入和优化的屏蔽气流,而且还有益于理解LPBF工艺蒸发的影响。
* 此金额不包括成本分摊或项目利用的 HydroGEN 资源支持(由 DOE 单独提供) * 我们仍在等待奖励设置,因此据我所知,迄今为止尚未收到任何 DOE 资金
可以通过刚性纸来创建可弹性变形的材料,通过对可以局部弯曲和弯曲的适当网格进行图案。我们演示了如何使用三光束干扰光刻在大面积上制造微观模式。我们产生的网格在任何刚性材料膜中都会引起较大且可靠的弹性。微涂层微观会产生可拉伸的导电膜。当样本可逆地拉伸至30%并且没有引入重大缺陷时,电导率变化可以忽略不计,而与迅速撕裂的连续纸相比。缩放分析表明,我们的方法适合于进一步的微型化和大规模制造可拉伸功能膜。因此,它为电子,光子和传感应用中的可拉伸互连以及各种其他可变形结构打开了路线。
我们报道了一种通过原子层沉积 ALD 在长宽比超过 35:1 的非常窄的孔内共形生产薄的、完全连续且高导电性的铜膜的方法。纯铜薄膜由新型铜 I 脒基前体、铜 IN、N -二仲丁基乙脒和分子氢作为还原剂生长。该铜前体在汽化过程中为液态,因为其熔点 77°C 低于其汽化温度 90-120°C 。因此,前体蒸汽的传输非常可重复且可控。碳和氧杂质低于 1 原子%。每个循环的生长在 SiO 2 或 Si 3 N 4 表面上为 1.5-2 Å/循环,但在金属 Ru、Cu 和 Co 表面上仅为 0.1-0.5 Å/循环。在氧化物表面,铜原子形成孤立的铜晶体,经过更多沉积循环后合并为粗糙的多晶膜。在 Ru 和 Co 金属表面上,ALD Cu 密集成核,形成光滑且附着力强的薄膜,即使对于薄至 4 个原子层的薄膜,这些薄膜也是连续的。在 2 nm Ru 基底上沉积 4 nm Cu 时,薄层电阻低于 50 / ,这足以制作用于电镀 Cu 互连线的种子层。© 2006 电化学学会。DOI:10.1149/1.2338632 保留所有权利。