密度泛函理论计算用于预测 Cd 基混合有机-无机高 TC 铁电钙钛矿的电子结构,TMCM-CdCl 3 是其中一种代表。我们报告了这些非磁性化合物价带中的 Rashba-Dresselhaus 自旋分裂。有趣的是,我们在计算中发现分裂不一定对材料的极化敏感,而是对有机分子本身敏感,这为通过分子的选择实现其化学可调性开辟了道路。通过在 CdCl 3 链中替换 Cl,可以进一步实现自旋分裂的化学可调性,因为发现价带源自 Cl-Cl 周键合轨道。例如,在 TMCM-CdCl 3 中用 Br 替换 Cl 导致自旋分裂增加十倍。此外,这些材料中的自旋极化产生了与极化方向耦合的持久自旋纹理,因此可以通过电场进行控制。这对于自旋电子学应用来说很有前景。
图 3. (a) 黑暗环境下 cKPFM 测量中相位响应的加载图,其中 BE-PFM 测量中观察到铁电畴。(a) 中 (b) 红色、(c) 绿色、(d) 紫色和 (e) 浅蓝色标记的“×”处的单个 cKPFM 曲线。(f) 照明环境下 cKPFM 测量中相位响应的加载图。(g) 黄色、(h) 绿色、(i) 紫色和 (j) 浅蓝色标记的“×”处的单个 cKPFM 曲线。(k) 黑暗环境下和 (l) 照明环境下 cKPFM 数据平均偏差的第 1 个 PCA 分量。
由于某些化学成分表现出所谓的杂化铁电性不当,近年来,近年来,ruddlesden-popper氧化物中温度依赖性的相变的次要氧化氧化物氧化物中的温度依赖性相变。然而,目前几乎没有理解这些相变的静水压力依赖性。本文中,我们介绍了对双层ruddlesdledlesden-popper阶段Ca 3 Mn 2 O 7和Ca 3 Ti 2 O 7的高压粉末同步X射线衍射实验和Abinitio研究的结果。在两种化合物中,我们都观察到一阶相变,结合了我们的密度功能理论计算,我们可以将其结合分配为极地A 2 1 AM和非极性ACAA结构。有趣的是,我们表明,尽管压力的施加最终有利于非极相,正如适当的铁电体所观察到的那样,但存在压力实际上可以增加极性模式振幅的响应区域。可以通过考虑八面体倾斜和旋转对静水压力及其三线性耦合与极性不稳定的旋转的多样化响应可以无障碍。
简单总结:在本文中,我们回顾了过去十年的知识进展,得益于许多学者和研究人员的投入,这些进展已经阐明了与铁死亡及其与癌症的关系有关的许多方面。铁死亡目前被认为是一种独特的受调节细胞死亡 (RCD) 类型,其特征是铁依赖性氧化应激和致命氧化脂质的积累。重点关注最近的文献,强调了铁稳态、氧化应激和脂质代谢之间的联系,这些联系总体上调节了铁死亡细胞死亡。此外,特别关注了这种 RCD 通路可能作为肿瘤抑制机制的激活。从调控和分子角度深入了解它可以为开发治疗对常规疗法有耐药性的肿瘤的新候选药物提供重要信息。
1美国亚特兰大埃默里大学医学院Winship Cancer Institute的血液学和医学肿瘤学系,美国佐治亚州30322; nfsaba@emory.edu 2 Wallace H. Coulter生物医学工程系,佐治亚理工学院和埃默里大学,亚特兰大,佐治亚州亚特兰大,佐治亚州30322,美国3美国,西南大学药物科学和中医学院,西南大学,中国北部400715,中国; lx126001@126.com 4 Otorhinolaryngology-Head and Neck Surgery系,赫尔辛基大学和赫尔辛基大学医院的系统肿瘤学研究计划,芬兰赫尔辛基,赫尔辛基大学医院; antti.makitie@helsinki。 e likek@ump.edu.pl 6 Poznan医学科学大学药理学系,波兰Poznan 60-806; agata.czarnywojtek@ump.edu.pl 7内分泌学系,代谢和内科医学系,波兹南医学科学大学,Przybyszewskiego 49,60-355 Poznan,Poland 8,Poland 8,国际高级和颈部科学科学的协调员,35125 PADUA,ITALE,ITALE,ITALE; profalfirlito@gmail.com *通信:yong.teng@emory.edu;电话。 : +1-(404)-712-8514†这些作者对这项工作也同样贡献。1美国亚特兰大埃默里大学医学院Winship Cancer Institute的血液学和医学肿瘤学系,美国佐治亚州30322; nfsaba@emory.edu 2 Wallace H. Coulter生物医学工程系,佐治亚理工学院和埃默里大学,亚特兰大,佐治亚州亚特兰大,佐治亚州30322,美国3美国,西南大学药物科学和中医学院,西南大学,中国北部400715,中国; lx126001@126.com 4 Otorhinolaryngology-Head and Neck Surgery系,赫尔辛基大学和赫尔辛基大学医院的系统肿瘤学研究计划,芬兰赫尔辛基,赫尔辛基大学医院; antti.makitie@helsinki。 e likek@ump.edu.pl 6 Poznan医学科学大学药理学系,波兰Poznan 60-806; agata.czarnywojtek@ump.edu.pl 7内分泌学系,代谢和内科医学系,波兹南医学科学大学,Przybyszewskiego 49,60-355 Poznan,Poland 8,Poland 8,国际高级和颈部科学科学的协调员,35125 PADUA,ITALE,ITALE,ITALE; profalfirlito@gmail.com *通信:yong.teng@emory.edu;电话。: +1-(404)-712-8514†这些作者对这项工作也同样贡献。
© 作者 2025。开放存取 本文根据知识共享署名 4.0 国际许可协议进行授权,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可协议的链接,并指明是否做了更改。本文中的图片或其他第三方资料包含在文章的知识共享许可协议中,除非资料的致谢中另有说明。如果资料未包含在文章的知识共享许可协议中,且您的预期用途不被法定规定允许或超出允许用途,则需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问:http://creativecommons.org/licicenses/by/4.0/ 。
摘要 本研究获得了基于铁电磁 PbFe 1/2 Nb 1/2 O 3 粉末和铁氧体粉末(锌镍铁氧体,NiZnFeO 4 )的多铁性(铁电-铁磁)复合材料(PFN-铁氧体)。陶瓷 PFN-铁氧体复合材料由 90% 粉末 PFN 材料和 10% 粉末 NiZnFeO 4 铁氧体组成。陶瓷粉末采用传统工艺方法合成,采用粉末煅烧,而复合粉末的致密化(烧结)采用两种不同的方法进行:(1)自由烧结法(FS)和(2)放电等离子烧结(SPS)。对复合 PFN-铁氧体样品进行了热测试,包括直流电导率和介电性能。此外,还在室温下测试了复合材料样品的 XRD、SEM、EDS (能量色散谱) 和铁电性能 (磁滞回线)。在工作中,对用两种方法获得的 PFN-铁氧体复合材料样品的测量结果进行了比较。多铁性陶瓷复合材料的 X 射线检查证实了来自复合材料铁电 (PFN) 基质的强衍射峰以及由铁氧体组分引起的弱峰。同时,研究表明不存在其他不良相。这项研究的结果表明,通过两种不同的烧结技术 (自由烧结法和放电等离子烧结技术) 获得的陶瓷复合材料可以成为功能应用的有前途的材料,例如,用于磁场和电场传感器。
强度有助于确定与相动力学(n、k 和活化能 E a )和伴随生长相关的各种参数。钙钛矿的有效活化能
基于人工突触的受脑启发的神经形态计算硬件为执行计算任务提供了有效的解决方案。然而,已报道的人工突触中突触权重更新的非线性和不对称性阻碍了神经网络实现高精度。在此,这项工作开发了一种基于 α -In 2 Se 3 二维 (2D) 铁电半导体 (FES) 中的极化切换的突触记忆晶体管,用于神经形态计算。α -In 2 Se 3 记忆晶体管利用记忆晶体管配置和 FES 通道中电配置极化状态的优势,表现出出色的突触特性,包括近乎理想的线性度和对称性以及大量可编程电导状态。因此,α -In 2 Se 3 记忆晶体管型突触在模拟人工神经网络中的数字模式识别任务中达到了 97.76% 的高精度。这项工作为在先进的神经形态电子学中使用多端 FES 记忆晶体管开辟了新的机遇。