在过去的几十年中,使用位点特异性核酸酶进行精确操纵DNA的技术经历了深刻的进步,成为了定向诱变的有希望的替代方法,并且对基因表达进行了精细的控制。脱颖而出的基因组编辑,例如锌指核酸酶(ZFN),转录激活剂样效应子核酸酶(Talens),以及最近的CRISPR/CAS(群集定期间隔间隔的短palindromic重复序列)与Cas cas核酸酶相关。后者具有其革命性,尤其是其特殊性,普遍性和相对简单性(Pickar-Oliver; Gersbach,2019年)。此外,CRISPR/CAS是一种可以修改的灵活工具,有助于其在细胞功能和生物技术研究中的持续改进和多样化的应用。
靶向DNA裂解的早期方法是使用寡核苷酸,小分子或自剪接内含子来进行DNA序列的特定识别。寡核苷酸与化学裂解/交叉链接试剂(如博来霉素和牛coral蛋白)耦合(Tabassum等,2017)。这些方法对于位点特异性基因组修饰而言是不明显的。尽管锌指核酸酶(ZFN)和TALES是有效的基因组编辑试剂,但由于难度和验证了这种蛋白质的特定DNA基因座的困难和验证(Doudna and Charpentier,2014年)。在2010年,Fyodor Urnov及其同事明确提出了采用基因组编辑表达方式来指定新设计的DNA剪刀的使用的原因:事实是,他们在基因组中以有限的数字>
2010年,Itoh等人利用甲基乌苯美司合成了另一种PROTAC分子,以募集E3连接酶(凋亡蛋白抑制剂(IAP))来降解POI。为了提高效力和靶标选择性,具有高亲和力和特异性的小分子(例如,募集E3连接酶cereblon(CRBN)的邻苯二甲酰亚胺或识别E3连接酶Von Hippel-Lindau(VHL)的VHL-1)进入PROTAC分子,进而下调多种癌症靶标,例如Ikaros家族锌指蛋白1/3(IKZF1/3)和雌激素相关受体α(ERRα)。基于小分子的PROTAC的突破为PROTAC作为癌症治疗策略开辟了一条新道路。
1. 简介 多年来,分子生物学家一直在寻找利用细胞修复机制通过基因组编辑来操纵 DNA 的方法。通过这种方式,他们就能够通过纠正突变或引入新功能来改变基因组 (Rodriguez, 2016)。为此,开发了基因组编辑技术 (Memi et al., 2018)。近年来,成簇的规律间隔短回文重复序列技术 (CRISPR-Cas9) 已成为最受欢迎的基因编辑方法。与以前的技术(如锌指核酸酶 (ZFN) 和转录激活因子样效应核酸酶 (TALEN))相比,该技术具有准确性高、易于操作和成本相对较低等优势。由于这些优势,CRISPR-Cas9 技术可轻松应用于任何分子生物学实验室。
成簇的规则间隔回文重复序列被称为 CRISPR。它是一种可以编程来改变、消除或激活基因组的蛋白质。这项尖端技术提供了广泛的实施可能性,并将在未来几年彻底改变口腔保健。最广泛使用的基因组编辑技术包括归巢内切酶、转录激活因子样效应核酸酶、锌指核酸酶和 CRISPR-CRISPR 相关蛋白 9 (Cas9)。这些适应性强的基因组编辑工具可以以序列特异性的方式改变基因组。由于其高效和准确,基因组编辑方法 CRISPR-Cas9 已引起人们的关注,成为抗击癌症的有力武器。本综述介绍了这种方法及其用途,特别是在牙科领域的用途。
a,b这些作者对摘要摘要摘要大米(Oryza sativa L.)是全球重要的主食。面对气候变化,需要改善水稻的定性和定量特征,满足人口增加的营养需求不断增长。近年来,基因组编辑在谷物作物的优质种类的发展中发挥了重要作用。基因组编辑和速度繁殖提高了水稻育种的准确性和速度。在大米中已经建立了包括基因组编辑在内的新育种技术,从而扩大了作物改善的潜力。在十年中,诸如锌指核酸酶(ZFN),转录激活剂样效应核酸酶(Talens)(Talens)和群集定期间隔短的短质体重复序列(CRISPR)/CRISPR相关蛋白9(CAS9)系统(CAS9)系统使用蛋白质9(Cas9)系统的诸如锌指核酸酶(ZFN)(ZFN),类似于转录激活剂样效应子核酸酶(Talens)(Talens)(CAS9(CAS9),并在赖斯分配中起着非常出色的作用。 此外,最近的其他基因组编辑技术(例如Prime编辑和基础编辑者)也已用于大米中的有效基因组编辑。 由于大米是一个出色的模型系统,因此由于其小基因组和与其他谷物作物的密切合成关系,因此继续开发用于大米的新基因组编辑技术。 采用基因组编辑技术(GET)等基因组改变进行了反向遗传学,已经在农业科学(例如水稻产量和谷物质量改善)方面开辟了新的途径。 这些方法的有效性正在全球研究人员和作物科学家验证。诸如锌指核酸酶(ZFN)(ZFN),类似于转录激活剂样效应子核酸酶(Talens)(Talens)(CAS9(CAS9),并在赖斯分配中起着非常出色的作用。此外,最近的其他基因组编辑技术(例如Prime编辑和基础编辑者)也已用于大米中的有效基因组编辑。由于大米是一个出色的模型系统,因此由于其小基因组和与其他谷物作物的密切合成关系,因此继续开发用于大米的新基因组编辑技术。采用基因组编辑技术(GET)等基因组改变进行了反向遗传学,已经在农业科学(例如水稻产量和谷物质量改善)方面开辟了新的途径。这些方法的有效性正在全球研究人员和作物科学家验证。目前,CRISPR/CAS9技术被研究人员广泛用于基因组编辑,以实现所需的生物学目标,因为它具有简单的定位,易于设计,具有成本效益和多才多艺的工具,用于精确有效的植物基因组编辑。在过去的几年中,通过CRISPR/CAS9技术方法成功编辑了许多与水稻纹理质量和产量相关的基因,以满足全球对食品需求不断增长的需求。在这篇综述中,我们着重于用于水稻改进的基因组编辑工具,以解决取得的进展,并提供大米基因组编辑的例子。我们还讨论了获得无转基因作物的安全问题和方法。
EnGen 突变检测试剂盒提供用于检测靶向基因组编辑事件的试剂。第一步,使用 Q5 Hot Start High-Fidelity 2X Master Mix 扩增基因组被靶向的细胞(即 CRISPR/Cas9、TALEN、锌指核酸酶)的目标区域。变性和重新退火后,当扩增子池中存在插入和缺失 (indel) 突变时,会形成异源双链。第二步,退火的 PCR 产物用 EnGen T7 核酸内切酶 I 消化,这是一种结构特异性酶,可识别大于 1 个碱基的错配。当存在错配时,DNA 的两条链都会被切断,从而形成较小的片段。对所得片段的分析可以估计基因组编辑实验的效率。
E3 连接酶 cereblon (CRBN) 被发现是沙利度胺及其类似物的靶标,这彻底改变了靶向蛋白质降解 (TPD) 领域。这种泛素介导的降解途径首先由二价降解剂利用。最近,低分子量分子胶降解剂 (MGD) 的出现扩大了 TPD 领域,因为 MGD 通过相同的机制运作,同时提供与小分子疗法一致的有吸引力的物理化学特性。本综述深入探讨了 MGD 的发现和发展,并以细胞周期蛋白 K 和锌指蛋白 IKZF2 为例进行了研究,重点介绍了设计原理、生物测定和治疗应用。此外,它还研究了分子胶的化学空间,并概述了推动该领域创新的合作努力。
I 控制基因组编辑 人们设计和使用了许多创造性的基因组编辑方法,每种方法都有各自的挑战。在所有情况下,内切酶都会靶向特定的 DNA 位点,而靶向会导致“高效”的双链 DNA 切割。(请参阅幻灯片中对与 DNA 结合的设计的锌指和使用 Tal 效应物与 DNA 结合的 TALENS 的描述。这两种结构都将其 DNA 结合物附加到 FokI 核酸酶上。)CRISPR 系统的发现以及过去 3 年对该系统的设计彻底改变了基因组编辑。该系统不断发生变化,导致有关该主题的论文激增。我们将重点介绍您本周要阅读的论文中使用的 CRISPR-cas9 系统的简要概述。
(LOF)帕金森氏病(PD)的变体。通过整合全外观测序数据和功能证据,Jansen等人。建议ZnF543基因的LOF变体是PD的候选者。他们表明,击倒Znf543基因可以减少每个细胞的线粒体数,表明该变体在PD病理学中的作用(Nalls等人。2019; Jansen等。2017)。Znf543是一种含有KRAB结构域的锌指蛋白,该蛋白是转录抑制域(Ecco,Imbeault和Trono 2017)。到目前为止,尚无证据表明ZnF543在PD中的功能,其突变引起的机制尚未阐明。鉴于TRIM28在线粒体功能障碍中的作用和PD中线粒体生物发生水平降低,以及其与Znf543基因相同的位置