在物理治疗领域的10年经验,拉胡尔(Rahul)将自己确立为行业中的杰出人物。 Rahul的专业知识超出了传统的物理疗法,包括针灸,老年护理,脊骨疗法和整骨技术,干针,Dry针刺,MC Kenzie A Part A&B,Mulligan从业者,TMJ专家,Cupping,Sujok,Sujok,Sujok,Kineology Taping,Kineology Taping,Dorns Therapy和dapy and papity和更多。 他与众多知名的机构和组织合作,展示了他的多功能性和奉献精神,以便为患者提供全面的护理。 Rahul Rajeev采用整体治疗方法,专注于解决疾病的根本原因,可确保患者在Anchor Physotherapy&Sports Fitness Studio中获得最高质量的护理质量。在物理治疗领域的10年经验,拉胡尔(Rahul)将自己确立为行业中的杰出人物。Rahul的专业知识超出了传统的物理疗法,包括针灸,老年护理,脊骨疗法和整骨技术,干针,Dry针刺,MC Kenzie A Part A&B,Mulligan从业者,TMJ专家,Cupping,Sujok,Sujok,Sujok,Kineology Taping,Kineology Taping,Dorns Therapy和dapy and papity和更多。他与众多知名的机构和组织合作,展示了他的多功能性和奉献精神,以便为患者提供全面的护理。Rahul Rajeev采用整体治疗方法,专注于解决疾病的根本原因,可确保患者在Anchor Physotherapy&Sports Fitness Studio中获得最高质量的护理质量。
Yoseop Yoon,1 Elodie Bournique,2 Lindsey V. Soles,1 Hong Yin,3 Hsu-Feng Chu,4 Christopher Yin,5 Yinyin Zhuang,6 Xiangyang Liu,4 Liang Liu,1 Joshua Jeong,1 Joshua Jeong,1 Clinton Yu,7 Marielle valiian,1 lusiiay n xluy niia karielle valuy thu huy, Shi,3,6,8 Georg Seelig,5,9 Fangyuan ding,3 Liang Tong,4 Re´mi Buisson,2和Yongsheng Shi 1,10,10, * 1微生物学和分子遗传学系,加利福尼亚大学,IRVINE,IRVINE,CA 92697,IRV SECORTION,IRV,IRV,IRV,IRV,IRV,CACARION,CACARION,CACARION,IRV,CACARION,IRV,CACARIENT,CACARION,IRV,IRV,IRV,IRV,IRV,CACARIENT,IRV,CACARION FEMICATION,美国欧文,加利福尼亚州92697,美国3加州大学生物医学工程系,欧文,欧文,CA 92697,美国4美国4生物科学系,哥伦比亚大学,纽约,纽约,纽约10027,美国5电气与计算机工程系 Irvine, CA 92697, USA 7 Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA 8 Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA 9 Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Seattle, WA 98195, USA 10 Lead contact *Correspondence: yongshes@uci.edu https://doi.org/10.1016/j.molcel.2024.12.016
我们引入神经网络作为人工智能模型之一。神经网络是生物神经细胞回路中进行的信息处理的模型。神经细胞由称为细胞体的主体、从细胞体延伸出来的树突和连接到其他细胞的轴突组成。轴突的末端附着在其他神经细胞的树突上,轴突与其他神经细胞的连接处称为突触。树突接收来自其他细胞和感觉细胞的输入信号,信号在细胞体内进行处理,并通过轴突和突触将输出信号发送给其他神经元(图2(a))。 据称大脑中的神经元数量约为 10^10 到 10^11。通过结合这些细胞,每个神经元以并行和分布式的方式处理信息,从而产生非常复杂和先进的处理。一个细胞的输出通过突触传递到其他细胞,通过轴突可以分支成数十到数百个神经元。单个细胞具有的突触连接数量从数百个到数万个不等。所有这些突触连接都有助于神经元之间的信号传输。 当一个信号从另一个神经细胞到达一个神经细胞时,膜电位会因信号而发生变化,当信号超过一定的阈值时,电位就变为正值,神经细胞就会兴奋。然后它向其他神经元发送信号。无论输入值如何,该图的形状几乎都是相同的波形,一旦超过阈值,就会产生恒定形状和幅度的电脉冲。因此人们认为,神经网络中承载信息的不是电脉冲的波形,而是电脉冲的频率(图2(b))。 细胞体的阈值函数,当输入高于阈值时,发出电脉冲,当输入低于阈值时,不发出电脉冲,具有从输入到输出的非线性转换效果。此外,还有兴奋性突触,它会释放使输入神经细胞更容易兴奋的递质,还有抑制性突触,它会使输入神经细胞更不容易兴奋。接收输入神经元可以被认为是接收来自每个输出神经元的输入的总和。 神经网络的数学模型源于对神经元的观察。 1943年,McCullough和Pitts提出了正式的神经元模型。图 2(c)中的圆圈表示一个神经元的模型。 xk 取值 0 和 1,表示该神经元接收的突触数量。
近年来,基于锚点的方法在多视图聚类中取得了可喜的进展。这些方法的性能受到锚点质量的显著影响。然而,以前的研究生成的锚点仅仅依赖于单视图信息,忽略了不同视图之间的相关性。特别地,我们观察到相似的模式更有可能存在于相似的视图之间,因此可以利用这种相关性信息来提高锚点的质量,而这同样被忽略了。为此,我们提出了一种新颖的即插即用的通过视图相关性进行多视图聚类的锚点增强策略。具体而言,我们基于对齐的初始锚点图构建视图图来探索视图间相关性。通过从视图相关性中学习,我们使用相邻视图上锚点和样本之间的关系来增强当前视图的锚点,从而缩小相似视图上锚点的空间分布。在七个数据集上的实验结果证明了我们的方法优于其他现有方法。此外,大量的对比实验验证了所提出的锚增强模块应用于各种基于锚的方法时的有效性。
抽象孤立的手语识别(ISLR)的目的是将标志分类为相应的光泽,但由于快速运动和小动手变化,它仍然具有挑战性。基于姿势的方法,由于其对环境的鲁棒性而引起了人们的注意,这对于这种挑战性的运动和变化至关重要,这是由于难以从嘈杂的关键点捕获小的关节运动。在这项工作中,我们强调了预处理关键以减轻此类错误风险的重要性。我们使用锚点采用归一化来准确跟踪骨骼接头的相对运动,重点是手动运动。此外,我们实施双线性插值来重建关键点,特别是为了检索未检测到的手的缺失信息。这项工作中提出的预处理方法表明,通过在WLASL数据集上的数据增强,准确性提高了6.05%,并且在基于姿势的方法中最高的数据增加了准确性83.26%。所提出的方法显示出在手部形状重要性的迹象的情况下,尤其是当某些框架没有被发现的手时。
但是,在某些情况下,即使在视频中跳来跳去后,用户仍然很难构成某些部分,尤其是如果视频无法解决其特定查询时。在这种情况下,他们经常在评论部分留下问题,要求对视频的特定部分进行进一步的解释[54]。虽然及时回答问题对于从教程中有效学习至关重要,但是从社区获得答案或教程作者可能需要数小时或几天。在某些情况下,问题甚至可能没有解决。解决问题的延迟会破坏学习过程,并阻止观众完全参与教程内容。为了解决这个问题,我们探索了自动回答有关教程视频问题的过程的方法。我们首先是对用户问答行为的深入分析。为了洞悉这种行为,我们从Autodesk Fusion 360的前20个最受欢迎的视频教程(3D计算机辅助设计(CAD)软件应用程序中,我们收集了所有5,944个共同的数据集。在评论中确定了663个问题后,我们进一步确定了四个主要类别问题:有关教程内容(“内容”)的问题,有关学习者的个人设置的问题或有关教程(“用户”)(“用户”)的挑战,有关视频的元信息(META)的问题,以及与内容不直接相关的问题。
在FAL3中,订户应通过向RP提出身份验证器来验证,除了断言。此处使用的身份验证者也称为绑定的身份验证者和sec。。例如,如果订户在IDP和RP之间执行联邦登录过程,则RP将提示用户提供链接到RP用户帐户的界限验证者。FAL3中介绍的界面验证者不需要与订户对IDP身份验证时使用的身份验证者相同。主张来识别订户,并且BOUND身份验证者给出了试图登录的一方的最高概率是由主张确定的订户。请注意,直到使用界面验证者进行身份验证,RP验证了身份验证器是否正确链接到主张指示的RP订户帐户,才能实现FAL3。
工程通函 N O . 4 • 岩土工程通函 N O . 4 • 岩土工程通函 N O . 4 • 岩土工程通函 N O . 4 • 岩土工程通函 N O . 4 • 岩土工程通函 N O . 4 • 岩土工程通函 N O . 4 • 岩土工程通函 N O . 4 • 岩土工程通函 N O . 4 • 岩土工程通函 N O . 4 • 岩土工程通函 N O . 4 • 岩土工程圆形第 N O . 4 • 岩土工程圆形第 N O . 4 • 岩土工程圆形第 N O . 4 • 岩土工程圆形第 N O . 4 • 岩土工程圆形第 N O . 4 • 岩土工程圆形第 N O . 4 • 岩土工程圆形第 N O . 4 • 岩土工程圆形第 N O . 4 • 岩土工程圆形第 N O . 4 • 岩土工程圆形第 N O . 4 • 岩土工程圆形第 N O . 4 • 岩土工程圆形N O . 4 • 岩土工程圆形N O . 4 • 岩土工程圆形N O . 4 • 岩土工程圆形N O . 4 • 岩土工程圆形N O . 4 • 岩土工程圆形N O . 4 • 岩土工程圆形N O . 4 • 岩土工程圆形N O . 4 • 岩土工程圆形N O . 4 • 岩土工程圆形N O . 4 • 岩土工程圆形N O . 4• 岩土工程通函第 4 号 • 岩土工程通函第 4 号 • GEOTECHNICA