风振对双子座 8m 主镜的影响 Myung K. Cho 1,2 、Larry Stepp 1 和 Seongho Kim 3 (1)双子座 8m 望远镜项目;(2)亚利桑那大学光学科学中心;(3)亚利桑那大学航空航天和机械工程学院 摘要 大型望远镜的关键设计因素之一是控制由风压变化引起的主镜畸变。为了量化望远镜风荷载效应,双子座天文台在实际山顶条件下进行了一系列风试验。在南双子座望远镜的调试期间,同时测量了镜面多个点的压力,以及穹顶内外多个位置的风速和风向。在测试期间,我们改变了穹顶相对于风的位置、望远镜仰角、挡风玻璃在观测狭缝中的位置以及通风门的开口大小。针对 116 种不同的测试条件,以每秒十次的数据采样率记录了五分钟的数据。这些数据集经过处理,可提供每个时刻镜面上的压力图。根据这些压力图,使用有限元分析计算主镜的光学表面畸变。开发了数据缩减程序,以增强测试数据和镜面畸变的可视化。测试结果对
由于自 1992 年以来进行的测试和特性分析工作,基于 DLP™ 技术的投影仪表现出优于竞争技术的可靠性和使用寿命。使用寿命估计超过 100,000 小时,且图像质量没有下降是常态。作为证据,TI 可靠性部门对 DLP™ 子系统和 DMD 芯片进行了持续的寿命测试。大屏幕电视在实验室中持续运行超过 10,000 小时,没有缺陷,也没有图像伪影。小型、便携、轻便的会议室投影仪在我们的可靠性实验室中运行了超过 26,000 小时,没有增加缺陷或图像质量下降。1995 年 12 月对 9 个 DMD 进行了测试,运行时间超过 56,500 小时,镜面循环次数超过 3x10 12(万亿次)(相当于典型办公室投影仪应用的 100 多年),没有出现任何缺陷。这些结果与建模预测相结合,支持了以下结论:DMD 极其坚固可靠。例如: • DMD MTBF > 650,000 小时 • DMD 寿命 > 100,000 小时 • 铰链寿命 > 3x10 12 镜面循环(相当于 >120,000 个工作小时) • 环境稳定性
纳米定位和纳米轴承机用于在25 mm x 25 mm x 5 mm的范围内进行三维坐标测量,分辨率为0.1 nm。其独特的sens sentement在所有三个坐标轴上都提供了无误差测量。用于长度测量值的三个微型平面镜面干涉仪的测量轴实际上与探针传感器的接触点与单个点的测量对象相交。
使用头部安装的微型显微镜在体内钙像中实现了几周来自由表现动物的神经种群的跟踪活动。先前的研究着重于从神经元种群中推断行为,但是在内窥镜数据中提取过量荧光的神经元信号具有挑战性。存在分析管道包括利益区域(ROI)识别区域,可能会因假否定性而失去相关信息或从假阳性引入意外偏见。这些方法通常需要进行参数调整的先验知识,并且需要耗时以进行实施。在这里,我们开发了一个端到端解码器,以直接从原始的微观镜面图像预测行为变量。我们的框架几乎不需要用户输入,并且胜过需要ROI提取的现有解码器。我们表明,神经/背景残差带有与行为相关的附加信息。视频分析进一步揭示了残留物与细胞之间的最佳解码窗口和动力学。至关重要的是,显着性图揭示了我们解码器中视频分解的出现,并确定代表不同行为方面的不同集群。一起,我们提出了一个框架,该框架对微观镜面成像的解码行为有效,并可能有助于发现各种成像研究的功能聚类。
当定制至关重要时,光学参考腔 (ORC) 系列就是我们的解决方案。您可以从出色的适配、辅助仪器和服务组合中进行选择,并从我们设计多代超稳定激光系统的经验中获益。ORC 系列是法布里-珀罗型腔,其谐振腔垫片由超低膨胀玻璃 (ULE) 制成。腔体安装在密封真空外壳中,具有出色的温度稳定性,可实现低频率漂移。紧凑的设计确保最小的空间需求。ORC-Cubic 可作为 6U、19 英寸机架模块使用。它基于国家物理实验室授权的刚性安装的立方体垫片。ORC-Cylindric 使用由德国联邦物理技术研究院设计的圆柱形垫片,水平安装在四个支撑点上。在这里,机械锁定机制确保了便携性。有各种附加组件和选项可供定制:镜面基底有 ULE 或熔融石英 (FS) 两种,镜面涂层可以是离子束溅射 (IBS) 或晶体 (XTAL),当低热噪声至关重要时,需要后者。高反射涂层适用于很宽的波长范围,也可作为双重或三重高反射镜。输入耦合、PDH 锁定和输出监控模块可以牢固地安装到腔体上,从而省去了运输后的繁琐重新调整。每个系统都在组装过程中经过烘烤。内置的 NTC 和 Peltier 元件可通过真空馈通装置接触,从而允许在热膨胀系数 (CTE) 的零交叉处工作。可根据要求提供 CTE 特性。两种腔体也可不带外壳。
(1)晶体结构:识别分子和固体的结构对称性对于了解其物理和某些化学特性的性质很重要。分子对称性由一个点组总结,为此,所有对称元素(点,轴,平面)在一个固定点上相交,该固定点被分配为空间坐标系的起源。例如,考虑使用点组𝒟6h。起源在没有原子的分子中心。其一些对称元素包括六倍旋转轴和六个垂直镜面;相应的操作是由2π/6(60°)的倍数旋转和反射。晶体固体在空间中的多个点显示旋转对称性,因为这些结构也表现出转化周期性,这是由晶格描述的。旋转和翻译对称操作的组合产生了一个空间群。考虑石墨烯的结构,该结构由融合的六元环的平面网络组成。如果忽略了平面中结构的终止,则每个六角形的中心都有六倍的旋转轴,并且每个碳原子都与三倍的旋转轴相交。翻译周期性由连接每个六角形中心的单位单元(平行四边形)表示。作为另一个例子,Cenic 2的结构包含[NIC 2]的平面与[NIC 2]平面的七元环上方和以下的CE原子平面交替。在沿堆叠方向的该结构的投影中,单位单元格是一个矩形,垂直镜面显而易见。此外,这种晶体结构还有另一种类型的对称性操作,对于任何分子:滑动反射而不会发生,其中通过镜面的反射是平行于(沿着(沿着)反射平面的(“滑行”)的位移。自身反射或自身位移都不是对称操作,但是两个操作的组合是用于Cenic 2结构。
太阳能航行是一种革命性的驱动航天器的方式。太阳帆(图3)使用大型,轻巧的镜面表面,以捕获从阳光下的动量,以将航天器向前推动。光由称为光子的无质量颗粒组成。光子在撞击其反射表面时将其动量(复数)转移到航天器中。就像在离子推进器中一样,每一个击中帆的光子都可以产生一个小的推力。Starshot Mission将使用太阳能航行前往我们太阳系Alpha Centauri最近的星系。
(最左侧的情况)。取决于相互作用的角度,该路径可能会大大缩短(中间情况),或者,由于这些晶体倾向于适度间隔,因此光子可以完全逃避表面HOAR晶体并直接进入下层雪层(中间情况)。此外,认为镜面贡献会增加表面HOAR层(最右边的情况),根据相互作用的角度,这可能会产生特别高或低的反射率。最后,因为表面hoar晶体几乎肯定会与下层层具有不同的SSA,所以光直接从表面Hoar 110