在这方面,近几年来,人们对基于镧系元素的单分子磁体 (SMM) 进行了深入研究,旨在在分子水平上稳定磁矩并开发更高密度的存储应用。[5,12–19] 镧系元素的缓慢弛豫时间、高磁矩和双稳态基态使其非常适合分子自旋电子学应用。[5,12,13] 镧系元素驱动的 SMM 方法的合理延伸是设计包含镧系元素的周期性网络,这些网络可以充当活性磁信息单元。在过去的几十年里,金属超分子协议已经成为一种设计嵌入金属元素的功能性网状材料的有力策略。[20–22] 这种合成范式也在表面上得到了发展,能够设计二维金属有机设计,主要采用过渡金属和碱金属。[23–25]
材料推动技术发展,例如微电子和纳米技术中的硅基半导体。这些材料虽然本质上是量子的,但它们的宏观特性并不表现出量子世界最引人注目的方面之一:纠缠。因此,半导体中的电子可以在单电子水平上建模。然而,一种新的范式——量子材料——正在出现,在量子计算领域具有潜在的应用潜力。在这些系统中,电子是纠缠的,单电子图像不再是材料特性的准确描述。相反,需要多体、N 电子处理。当前的 QIS 捕获并利用单个原子或离子作为量子比特,即经典比特的量子模拟。由于实验的不完善,需要许多离子才能累积起来代表一个可用的“逻辑”量子比特。捕获这些离子具有挑战性,因此系统既庞大又昂贵。世界上最先进的系统由 IBM 创建,仅捕获 53 个离子。量子材料的一种可能应用是利用物质深处的 N 电子纠缠作为 QIS 应用的资源。材料中的每个纠缠电子都充当量子比特,从而实现更大规模的 QIS。在 Mourigal 实验室博士后 Zhiling Dun 的帮助下,该项目的目标是合成和表征电子自旋可能纠缠的磁性材料。