研究正常或病理条件下的大脑动态已被证明是一项具有挑战性的任务,因为对于最佳方法没有统一的共识。在本文中,我们提出了一种基于传递熵的方法来研究健康受试者在睁眼(EO)和闭眼(EC)静息状态下不同大脑半球之间的信息流。我们使用了一个模拟临床环境中技术条件的实验装置,并从 65 Hz 采样率的 24 通道脑电图(EEG)短记录中收集数据集。我们的方法考虑了两种条件下的半球间和半球内信息流分析,并依赖于从 EEG 通道之间的传递熵估计计算出的 4 个指标。这些指标提供有关活动连接的数量、强度和方向性的信息。我们的结果表明,在 EC 条件下,alpha、beta1 和 beta2 频带的信息传递有所增加,但在任何一种条件下,半球间信息移动都没有优先的方向。这些结果与之前报道的以更高采样率进行更密集的 EEG 记录的研究一致。总之,我们的方法表明,在 EO 和 EC 静息状态下,大脑信息传递的动态存在显著差异,这也可以应用于常规临床治疗。
摘要:背景:脑损伤是格斗运动中常见的问题,尤其是在跆拳道等运动中。跆拳道是一项有多种比赛形式的格斗运动,大多数接触式格斗都是按照 K-1 规则进行的。虽然这些运动需要高水平的技能和身体耐力,但频繁的脑部微创伤会对运动员的健康和福祉造成严重后果。研究表明,格斗运动是脑损伤风险最高的运动之一。在脑损伤最多的运动项目中,拳击、混合武术 (MMA) 和跆拳道都名列前茅。方法:这项研究针对一组 18 名表现出高水平运动表现的 K-1 跆拳道运动员进行。受试者年龄在 18 至 28 岁之间。QEEG(定量脑电图)是对 EEG 记录的数字频谱分析,其中数据使用傅里叶变换算法进行数字编码和统计分析。每次对一个人的检查持续约 10 分钟,闭眼进行。使用 9 个导联分析特定频率(Delta、Theta、Alpha、感觉运动节律 (SMR)、Beta 1 和 Beta2)的波幅和功率。结果:中央导联的 Alpha 频率显示高值,前额叶 4(F4 导联)的 SMR 显示高值,F4 导联和顶叶 3(P3)的 Beta 1 显示高值,所有导联的 Beta2 显示高值。结论:SMR、Beta 和 Alpha 等脑波的高活动性会影响注意力、压力、焦虑和注意力,从而对跆拳道运动员的运动表现产生负面影响。因此,运动员监测自己的脑波活动并使用适当的训练策略来获得最佳效果非常重要。
招募了36名墨西哥籍慢性神经性疼痛患者(8名男性和28名女性),平均年龄为44±13.98岁,在睁眼和闭眼静息状态下记录EEG信号。每种状态记录5分钟,总记录时间为10分钟。每位患者报名参加研究后都会获得一个ID号,他们需要根据该ID号回答painDETECT问卷,作为神经性疼痛的筛查过程以及临床病史。记录当天,患者回答了简明疼痛量表,作为疼痛对日常生活干扰的评估问卷。使用Smarting mBrain设备注册了22个按照10/20国际系统定位的EEG通道。EEG信号以250 Hz采样,带宽在0.1到100 Hz之间。本文提供了两种类型的数据:(1)静息状态下的原始脑电图数据;(2)两次试验的患者报告。
摘要:最近,使用脑电图 (EEG) 进行音频信号处理中的模式识别引起了广泛关注。眼部情况(睁眼或闭眼)的变化反映在 EEG 数据的不同模式中,这些数据是从一系列情况和动作中收集的。因此,从这些信号中提取其他信息的准确性在很大程度上取决于在采集 EEG 信号期间对眼部情况的预测。在本文中,我们使用深度学习矢量量化 (DLVQ) 和前馈人工神经网络 (F-FANN) 技术来识别眼部情况。由于 DLVQ 能够学习代码约束的码本,因此在分类问题上优于传统 VQ。在使用 k 均值 VQ 方法初始化后,DLVQ 在 EEG 音频信息检索任务上测试时表现出非常出色的性能,而 F-FANN 将眼部状态的 EEG 音频信号分类为睁眼或闭眼。与 F-FANN 相比,DLVQ 模型具有更高的分类准确度、更高的 F 分数、精确度和召回率,以及更出色的分类能力。
创伤性脑损伤 (TBI) 是如果医疗救治延误,可能带来严重后果的损伤之一。通常,需要分析计算机断层扫描 (CT) 或磁共振成像 (MRI) 来确定中度 TBI 患者的严重程度。然而,由于如今 TBI 患者的数量不断增加,对每位潜在患者进行 CT 扫描或 MRI 扫描不仅成本高昂,而且耗时。因此,在本文中,我们研究了使用具有计算智能的脑电图 (EEG) 作为替代方法来检测中度 TBI 患者严重程度的可能性。EEG 程序比 CT 或 MRI 便宜得多。虽然与 CT 和 MRI 相比,EEG 的空间分辨率不高,但它的时间分辨率很高。使用传统的计算智能方法从 EEG 分析和预测中度 TBI 非常繁琐,因为它们通常涉及复杂的信号预处理、特征提取或特征选择。因此,我们提出了一种使用卷积神经网络 (CNN) 自动对健康受试者和中度 TBI 患者进行分类的方法。该计算智能系统的输入是静息状态下的闭眼脑电图,未经预处理和特征选择。使用的脑电图数据集包括 15 名健康志愿者和 15 名中度 TBI 患者,这些数据来自马来西亚吉兰丹马来西亚理科大学医院。将所提出方法的性能与其他四种现有方法进行了比较。所提出方法的平均分类准确率为 72.46%,优于其他四种方法。结果表明,所提出的方法有可能用作中度 TBI 的初步筛查,以选择患者进行进一步诊断和治疗计划。
已经开发了多种技术来帮助和改善瘫痪和严重运动障碍患者的交流。BCI 是一种不依赖于大脑正常的周围神经和肌肉输出通路的通信系统。在 UFES/巴西,我们正在开发一种基于诱发视觉刺激的自动驾驶汽车 BCI 系统(Castillo 等人 2013),这可能会导致视觉疲劳。一个很好的替代方法是通过用户命令切换 BCI,该命令可以通过闭眼来执行。这样,就采用了脑电图信号 (EEG),其中包含允许检测闭眼的信息。通过频率范围为 8 Hz 至 13 Hz 的 alpha 波分析,可以在枕叶上感知眼睛睁开和闭眼活动。alpha 波的高能量对应于清醒受试者的闭眼(90% 的健康和残疾人士)(Alaraj 和 Fukami 2013)。阿尔法波已被用于操作电子设备,然而,与睁眼(EO)和闭眼(EC)相关的自动识别并不是一件容易的事,因为阿尔法波的带宽受自然变化和电噪声以及肌肉伪影的影响。已经开发出几种自动检测阿尔法波的方法,例如:模拟滤波和平滑(AFS)、峰值检测和计数、功率谱分析、分形维数、KM2O-Langevin 和近似熵(Kirkup 等人 1998 年、Craig 等人 2005 年、Sakai 等人 2010 年、Alaraj 和 Fukami 2013 年)。所有上述方法都使用取决于每个受试者和实验条件的阈值作为参考。这项工作的目的是提出一种基于 EEG 阿尔法波变化信息的自动方法,用于识别清醒受试者的闭眼事件,以激活 BCI。