理论和实验之间的差异遍及整个科学,是人类发现的驱动力之一。模拟通常比实际实验所需的资源少,但很少捕获系统的全部复杂性,从而限制了它们的实际应用。缩小模型和现实世界之间的差距是使用机器学习控制复杂系统的关键,尤其是当机器学习模型在模拟上训练之前,然后将其应用于真实系统之前[1,2]。当存在无法直接观察到的数量时,现实差距将进一步扩大。可以通过对系统的其他特征的影响来估算这种不可观察的数量,例如,间接观察黑洞[3],观察到希格斯玻色子衰变的特征[4]或从后面墙壁后面的人类姿势估计的机器学习估计[5]。名义上相同设计的固态量子设备通常会显示出不同的特征。这种可变性阻碍了原本有希望的量子实现的可伸缩性,例如在电子的自旋状态
• 最常用于“密封源”(即封装源)。如果将放射性封装到密封源中,并且放射性大于或等于 100 微居里,则必须每 6 个月对密封源进行一次“泄漏测试”。泄漏测试方法必须能够检测到 0.005 微居里的可移除污染物的存在,并且必须在离源最近的可访问位置进行。 • 处理未密封放射性物质时必须穿着实验室外套和手套。监测双手并经常更换手套。 • 处理 Cd-109(密封或未密封源)时必须佩戴全身和环形剂量计。 • 应使用铅屏蔽以尽量减少 Cd-109 的暴露。 • 应使用间接观察辅助设备以尽量减少 Cd-109 的暴露。 • 将 Cd-109 存放在铅屏蔽中。 • 处理 Cd-109 时应使用远程处理工具。 • 在执行 Cd-109 程序之前,先练习没有放射性的程序。练习将提高灵活性和速度,同时提供机会确定错误和不符合 ALARA 的做法。• 每次使用未密封的 Cd-109 后,使用配备 GM 或 NaI 探头的测量仪监测自身、工作区域和地板。