摘要:本文探讨了碲化物玻璃中的 MoO 3 和 SiO 添加剂对在辐射背景或宇宙辐射增加的条件下工作的电子微电路的屏蔽特性和保护的影响。之所以选择 MoO 3 和 SiO 掺杂剂,是因为它们的特性(包括绝缘特性)可以避免辐射损伤引起的击穿过程。这项研究的意义在于提出使用防护玻璃保护电子电路中最重要的组件免受电离辐射负面影响的方法,电离辐射可能会导致故障或导致电子设备不稳定。使用标准方法评估伽马和电子辐射的屏蔽效率,以确定放置在屏蔽后面并受到不同剂量辐照的微电路的阈值电压(∆U)值的变化。结果表明,玻璃结构中 MoO 3 和 SiO 含量的增加可使伽马辐射屏蔽效率提高高达 90%,同时在长时间暴露于电离辐射的情况下仍能保持微电路性能的稳定性。根据所得结果,我们可以得出结论:使用基于 TeO 2 –WO 3 –Bi 2 O 3 –MoO 3 –SiO 的防护玻璃非常有希望为在背景辐射或宇宙辐射增加的条件下工作的微电路和半导体器件的主要部件提供局部保护。
镜头或防护玻璃是否受到污染?飞溅会污染CO 2机器的焦点镜头。镜头监视您的镜头,并在必要时关闭梁。好处:仅需在必要时对镜头清洁时间进行简短的停车时间,并且在真正必要的情况下只需要更换保护玻璃。在线验证保护性玻璃状态可确保您始终知道固态激光器的保护玻璃的状况,并且可以保持一致的质量。
安全预防措施!在研究说明手册和随附的安全性之前,请勿操作设备。确保始终伴随着设备的Profoto安全说明!Profoto产品旨在专业使用!不可避免的是,闪存产品中使用的电容器的类型有时可以断开。如果这应该发生,则可能会从闪光产物和烟雾中散发出鲜明的气味。避免将发射放在脸上。如果排放量应该插入眼睛或嘴巴,请用水冲洗。发射是无毒的。用水和肥皂冲洗,如果您在皮肤上泄漏了电解质。 不要摄取电解质。 发电机,灯头和配件仅用于室内摄影。 不要放置或使用设备可暴露于水分,极端电磁场或易燃气体或灰尘的区域! 不要将设备暴露于滴水或溅水中。 不要将装满液体(例如花瓶)的物体放在设备上或附近。 不要将设备暴露于潮湿条件下的急速温度变化,因为这可能会导致装置中的冷凝水。 请勿修改,拆卸,打开,掉落,撞击,穿刺,热量,高于60°C(140°F),焚化或切碎电池。 将电池(电池组或电池安装)远离开火或阳光,以防止热量积聚。 火灾和烧伤,破裂和爆炸,电解质泄漏和/或排气的风险。 排放是有毒的。 请勿在电池或其单元格中短路。用水和肥皂冲洗,如果您在皮肤上泄漏了电解质。不要摄取电解质。发电机,灯头和配件仅用于室内摄影。不要放置或使用设备可暴露于水分,极端电磁场或易燃气体或灰尘的区域!不要将设备暴露于滴水或溅水中。不要将装满液体(例如花瓶)的物体放在设备上或附近。不要将设备暴露于潮湿条件下的急速温度变化,因为这可能会导致装置中的冷凝水。请勿修改,拆卸,打开,掉落,撞击,穿刺,热量,高于60°C(140°F),焚化或切碎电池。将电池(电池组或电池安装)远离开火或阳光,以防止热量积聚。火灾和烧伤,破裂和爆炸,电解质泄漏和/或排气的风险。排放是有毒的。请勿在电池或其单元格中短路。在泄漏和/或通风的情况下提供良好的通风。将暴露的人移至新鲜空气并寻求医疗护理。如果细胞泄漏,请勿允许液体与皮肤或眼睛接触。在与皮肤或眼睛接触的情况下:立即用淡水冲洗并寻求医疗护理。如果电池变热,变色或变形,请停止使用电池。不要将此设备连接到其他品牌的闪光设备。如果没有提供的防护玻璃盖或防护网格,请勿使用闪光灯头。玻璃盖已被明显损坏,以至于其有效性受到损害,例如裂缝或深划痕。灯如果损坏或热变形,则应更改。将灯放入支架中时,请确保不要裸手触摸灯泡。设备必须仅由授权和有能力的服务人员进行维修,修改或修复!警告 - 标有闪光灯符号的终端是危险的现场直播。此设备不适合在可能存在儿童的地方使用。注意:不要在高度超过2 m(6.5英尺)的高度上安装B1X单元。
图1.1 - AM零件的照片:(a)推进器歧管,该歧管展示了形成内部途径和空腔的能力; (b)晶格立方体,既展示了AM的重量减轻和强度能力; (c)由钛制造的钥匙扣。这些照片不仅展示了AM的实际方面,还展示了该技术的艺术可能性。............................................................................................... 1 Figure 2.1 – Graph illustrating the different material processing techniques and the time for the interaction [34]... 11图2.2 - 直接激光沉积(DED)系统的示意图。......................................................................... 11 Figure 2.3 – A detailed schematic of a direct energy deposition (DED) system......................................................... 12 Figure 2.4 – Schematics of early patents used for the development of a coaxial head: (a) Gale et al.[24],(b)Schaefer等。[25]和(c)Livsey等。[27]。............................................................................................................. 13 Figure 2.5 – Patents of coaxial nozzle designs for comparative purposes: (a) Hammeke [28] and (b) Buongiorno [30]............................................................................................................................................................................... 14 Figure 2.6 – Simplified schematic for a coaxial head with two configurations: axial spray (left) and side spray (right) [33]............................................................................................................................................................................... 16 Figure 2.7 – Mapping of the parameters and the operating region for an DED design [51]....................................... 17 Figure 2.8 – Visual aid of a proposed beam routing system exaggerating the Gaussian profile...................................................................................................................................................................................................................................................................................................................................................................................................... reseation图证明了辐射的不同材料与波长的反射率[34]。.............................................................................................................................................................................. 20 Figure 2.10 – Early powder delivery patent schematics by Kenneth [81]................................................................... 23 Figure 3.1 – Design algorithm for DED machine design used to as a final check for the BenchDED....................... 30 Figure 3.2 – The experimental setup used in the development of the preliminary laser system.此实验设置用于确定使用两镜头配置与200瓦ND ND:YAG模块结合使用的最大点大小。The system was designed to be horizontal so that the substrate could be moved to the waist of the beam.................................................................................................................................................... 34 Figure 3.3 – Mirror beam routing system for DED............................................................................... 46 Figure 3.14 – Final design used in the research..................................................................................................... 35 Figure 3.4 – Fiber coupling systems............................................................................................................................ 36 Figure 3.5 – Schematic and photo of the first PDS prototype..................................................................................... 40 Figure 3.6 – Photos of a powder delivery system with pneumatics............................................................................. 41 Figure 3.7 – Photo of a mounted powder delivery system that used gravity to provide a consistent powder flow..... 41 Figure 3.8 – Schematic of the CAD coaxial nozzle..................................................................................................... 43 Figure 3.9 – 3D printed coaxial nozzle mock-up......................................................................................................... 43 Figure 3.10 – Testing optical assembly........................................................................................................................ 44 Figure 3.11 – Final optical assembly design................................................................................................................ 44 Figure 3.12 – Exploded view of the aluminum CNC manufactured coaxial nozzle.................................................... 45 Figure 3.13 – 2D side view of the coaxial nozzle CAD assembly........................................................................................................... 46 Figure 4.1 – Compiled and labeled photos of the BenchDED setup........................................................................... 51 Figure 4.2 – Optical microscope images at a magnification of x250 for varying the laser power density on SS316 substrates...................................................................................................................................................................... 55 Figure 4.3 – Localized vaporization of material experiments, with (a) showing a magnification of Figure 4.2 (d) and (b) showing a magnification of Figure 4.2 (e)............................................................................................................. 56 Figure 4.4 – Graph of melt pool diameter development in relation to power density................................................. 57 Figure 4.5 – The result of different scanning speeds and laser powers....................................................................... 58 Figure 4.6 – A magnified image of the outermost track from scanning rate experiments for a laser power of 125 W and scanning speeds of 50 mm/sec (left) and 200 mm/s (right).................................................................................. 59 Figure 4.7 – A comparison of the real images, versus the topology and depth mapping............................................ 60 Figure 4.8 – Optical images used to analyze the multi-pass deposition results........................................................... 61 Figure 5.1 – A photograph of the BenchDED chamber.绿色来自保护玻璃,该防护玻璃阻塞了所有红外辐射。............................................................................................. 69......................................................................................................................................................... 66 Figure 5.2 – Schematic of BenchDED G code toolpath.