业内专家表示,如果不加以解决,太空拥堵将成为一个严重的问题。太空垃圾种类繁多,从纳米颗粒到整个航天器,例如欧洲航天局的 Envisat 13。旧航天器的残骸和碰撞散落的碎片特别容易对低地球轨道造成影响。但问题不仅仅是太空垃圾:越来越多的活跃卫星会导致信号干扰。数字孪生技术可以帮助减少太空垃圾,例如使用基于人工智能的碰撞和信号干扰预测模型。数字孪生可以支持现有的跟踪方法并增强卫星的防撞系统。可以使用假设情景来避免与碎片的潜在碰撞,同时优化燃料使用。
学生将通过与工业合作伙伴的密切互动,学习各种应用领域的知识,例如:危险和/或非法商品的检测、边境嫌疑人检测、无现金支付的签名识别、打击假冒、法医和安全标记、生物系统分析、驾驶员困倦检测、医疗紧急情况下的识别系统、车辆间距离测量、生物医学应用、医疗诊断、污染控制、驾驶员视觉增强、驾驶辅助(防撞系统)、工业生产控制、帮助提高农业效率、食品安全、片上实验室生物传感器、化学物质和生物或无机材料的识别、光子装置的高精度制造、功能表面的生成和工业上的先进材料。
针对跑道入侵事件和航路分离事件的防撞屏障的有效性水平存在显著差异。与作为空中最后一道技术屏障的机载防撞系统 (ACAS/TCAS) 不同,目前尚不存在普遍实施的防止跑道碰撞的最后一道防线。虽然大型机场的地面技术(如 ASMGCS 2 和 ASDE-X 3)是防止跑道碰撞的最后手段,但这些系统通常成本高昂,无法在数千个机场部署。需要在可能导致跑道碰撞的事件链的上游和下游建立有效的系统屏障层,以确保未来的安全发展。
一家为商业航空业提供服务的美国一级供应商与我们合作,为其一架主要飞机开发 TCAS [或机载防撞系统 (ACAS)],采用全新的架构,使系统更易于维护且更高效。结果:这种计算机化的航空电子设备降低了空中相撞的危险。它独立于空中交通管制监控飞机周围的空域,并通过提供视觉或口头警报的高级图形用户界面向飞行员发出警告。我们开发的 CAS 逻辑和 CAS 模拟器有助于避免因技术风险而产生的重复性和周期性软件开发。我们提供记录和重放设施并同时执行多个测试,这大大缩短了回归时间,6 个月的计划仅用 3 个月就完成了。
满足日益增长的交通需求是林肯实验室自 20 世纪 70 年代初以来一直在应对的重要挑战。实验室最近的成就包括开发交通警报和防撞系统 (TCAS) [3],该系统在飞行员面临空中相撞危险时向他们发出警告,以及跑道状态灯系统 [4],并定义支持飞机分离标准所需的监视性能要求 [5]。此外,联邦航空管理局的下一代航空运输计划 (NextGen) 正在开发新技术和程序,以提高空中交通流量效率和安全性。国防部和国土安全部也越来越有兴趣将无人机安全引入 NAS。在每种情况下,都需要新的传感器和自动化系统概念来防止空中相撞,同时不干扰空中交通运营的快节奏。
警告 主飞行控制面和主飞行控制飞行员输入:俯仰轴、滚转轴、偏航轴 标记信标通道 每个导航接收器频率选择 手动无线电传输键控和 CVR/FDR 同步参考 自动驾驶仪/自动油门/AFCS 模式和接合状态* 选定的气压设置*:飞行员、副驾驶 选定的高度(所有飞行员可选择的操作模式)* 选定的速度(所有飞行员可选择的操作模式)* 选定的马赫(所有飞行员可选择的操作模式)* 选定的垂直速度(所有飞行员可选择的操作模式)* 选定的航向(所有飞行员可选择的操作模式)* 选定的飞行路径(所有飞行员可选择的操作模式)*:航向/DSTRK、路径角 选定的决断高* EFIS 显示格式*:飞行员、副驾驶 多功能/发动机/警报显示格式* GPWS/TAWS/GCAS 状态*:选择地形显示模式,包括弹出显示状态、地形警报、注意和警告以及建议、开/关开关位置 低压警告*:液压压力、气压 — 计算机故障* 客舱失压* TCAS/ACAS(交通警报和防撞系统/机载防撞系统)* 结冰探测* 发动机警告每台发动机振动* 发动机警告每台发动机超温* — 发动机警告每台发动机油压低* 发动机警告每台发动机超速* 风切变警告* 操作失速保护、摇杆器和推杆启动* 所有驾驶舱飞行控制输入力*:驾驶盘、驾驶杆、方向舵踏板驾驶舱输入力 垂直偏差*:ILS 下滑道、MLS 仰角、GNSS 进近航道 水平偏差*:ILS 航向道、MLS 方位角、GNSS 进近航道 DME 1 和 2 距离* 主导航系统参考*:GNSS、INS、VOR/DME、MLS、Loran C、 ILS 制动器*:左右制动压力、左右制动踏板位置 日期* 事件标记* 平视显示器正在使用* 辅助视觉显示开启*
Michael Zuschlag、Divya Chandra、Rebecca Grayhem Volpe 国家运输系统中心,马萨诸塞州剑桥 摘要 交通防撞系统 (TCAS) 交通显示器使用符号填充来区分“近距”和“非近距”目标,其中近距目标位于指定范围和本船高度内,而非近距目标则位于这些参数之外。虽然这对于 TCAS 显示器来说已经足够,但驾驶舱交通信息显示 (CDTI) 可以显示比 TCAS 显示多得多的信息,因此可能更倾向于使用符号填充的替代方法。由于交通符号用于编码信息的视觉特征数量有限,因此 CDTI 符号体系应仅编码飞行员可以有效使用的信息。本研究评估了近距状态指示的实用性,以了解它是否足够有用,可以在 CDTI 上显示。
当两架飞机在空中相撞时,后果将是悲惨的。幸运的是,这种碰撞在今天的空域很少见,因为有许多机制可以确保飞机之间的安全分离,主要是地面的空中交通管制 (ATC) 系统。为了提高现有系统的安全记录,联邦航空管理局 (FAA) 一直在探索增加机载防撞系统的可能性,作为所有现行规定的备份。交通警报和防撞系统 (TCAS) 是由 FAA 赞助的开发计划的成果,该计划已延续了十多年,目前正进入全国全面实施期。作为开发努力的成果,TCAS 设计提供了可靠的空对空监视,并受到了飞行员和航空界其他人士的热烈欢迎。 1987 年通过的一项联邦法律要求所有舰载飞机在 1991 年底前安装 TCAS。
自 2024 年 1 月以来,综合探路者项目一直在为在运营 TraCSS 中使用商业数据和服务开辟道路。这是一项有限期的工作,重点是使用商业 SSA 提供商为 LEO 机制展示 SSA 服务。OSC 最近将综合探路者项目延长了一个月,将该项目对商业 SSA 数据和服务的总投资增加到 1550 万美元。在 2023 财年,OSC 同样运行了 MEO/GEO 试点项目,该项目使用商业数据和分析来评估行业在 MEO 和 GEO 中提供空间交通协调的能力。OSC 还与 SpaceX 签署了一项无资金交换的合作研究与开发协议 (CRADA),以研究 SpaceX 的 Starlink 星座中使用的自动防撞系统,以便将其应用于 TraCSS。
航空电子设备利用半导体、印刷电路板组件 (pcba) 和锂离子电池等组件,这些组件有助于在小巧精致的封装中提供非凡的创新和功能。预测显示,航空电子设备市场将从 2019 年的 685 亿美元强劲增长至 2024 年的 869 亿美元。增长归因于航空电子设备的先进性推动了新设计、新功能和新连接,从而改善了飞机运行,同时提高了安全性,例如防撞系统和卫星导航。这些好处伴随着巨大的责任,因为航空电子设备在飞机正常运行中起着至关重要的作用。因此,如今的成功飞行在很大程度上取决于航空电子组件的质量,通常是微观层面上不可见元素的质量。在整个航空业中,航空电子设备的影响是巨大而普遍的。