脂质体递送系统显着提高了化学治疗剂的功效和安全性。脂质体是由亲脂性双层组成的囊泡和hy drophilic核心,为其作为各种Thera Peutic和诊断剂的运输工具提供了绝佳的机会。阿霉素是用于评估不同脂质体应用的最具利用的化学治疗剂,因为其物理化学特性允许高药物捕获和易于远程降低预成型的脂质体。pegypated脂质体阿霉素临床批准,在市场上,doxil®例证了脂质体与聚乙烯乙二醇的表面修饰所带来的好处。这种独特的配方延长了循环中的药物停留时间,并通过被动靶向(增强的渗透性和保留效应)在肿瘤组织中的Doxo Rubicin的积累增加。但是,通过将生物活性配体偶联到脂质体表面以产生智能药物输送系统,可以进一步提高靶向肿瘤的效率。小的生物分子,例如肽,抗体和碳水化合物的一部分具有靶向恶性细胞表面上的受体的潜力。因此,已经尝试使用功能化纳米载体(用阿霉素囊形的脂质体封装)对恶性细胞进行主动靶向,并在本文中进行了综述。
背景:多药耐药性 (MDR) 已成为癌症治疗的主要障碍,这主要是由于药物外排转运体的过度表达导致癌细胞对化疗药物的敏感性降低。基因治疗和化疗的结合被认为是通过逆转 MDR 效应来提高抗癌效果的潜在方法。材料和方法:通过乳液/溶剂蒸发策略构建 AS1411 适体功能化的胶束,用于同时共递送阿霉素和 miR-519c。以肝癌细胞系 HepG2 为模型,基于体外和体内主动靶向能力和对 MDR 的抑制探索胶束的治疗效果和相关机制。结果:通过以 AS1411 适体依赖的方式特异性识别核仁素,证明胶束具有良好的细胞摄取和肿瘤穿透能力。此外,miR-519c 抑制 ABCG2 介导的药物外排,显著提高阿霉素在细胞内的蓄积,从而有效抑制肿瘤生长。结论:胶束介导的阿霉素和 miR-519c 共递送提供了一种有希望的策略,通过主动靶向功能和 MDR 逆转来获得理想的抗癌效果。关键词:胶束,适体,核仁素,多药耐药,肿瘤靶向
摘要背景:转移性高级别骨肉瘤 (HGOS) 的低存活率在过去 30 年里一直停滞不前。本研究旨在探讨氨基肽酶 N (ANPEP) 在 HGOS 进展中的作用,以及一种新型亲脂性肽酶增强细胞毒化合物美法仑氟苯胺 (melflufen) 在 HGOS 中的靶向作用。方法:对公开的基因表达数据集进行荟萃分析,以确定 ANPEP 基因表达对 HGOS 患者无转移存活率的影响。在患者来源的 HGOS 离体模型和细胞系中研究了标准抗肿瘤药物和亲脂性肽酶增强细胞毒结合物美法仑的疗效。比较了美法仑和阿霉素诱导的细胞凋亡和坏死动力学。在体内研究了美法仑的抗肿瘤作用。结果:发现 HGOS 患者诊断活检中 ANPEP 表达升高会显著降低无转移生存率。在药物敏感性试验中,美氟芬在 HGOS 离体样本和细胞系中表现出抗增殖作用,包括对甲氨蝶呤、依托泊苷、阿霉素和 PARP 抑制剂有耐药性的细胞系。此外,用美氟芬处理的 HGOS 细胞显示出快速诱导凋亡,这种敏感性与 ANPEP 的高表达相关。在联合治疗中,美氟芬与阿霉素在杀死 HGOS 细胞方面表现出协同作用。最后,美氟芬在体内表现出抗肿瘤生长和抗转移作用。结论:本研究可能为使用美氟芬作为阿霉素的佐剂来提高转移性 HGOS 的治疗效果铺平道路。
van Vuurden 博士介绍了他在乌得勒支 Princess Maxima 中心的儿科神经外科工作。除了患者护理外,van Vuurden 博士还使用聚焦超声和其他方式进行临床前研究。他的中心正在安装一台与其飞利浦 MRI 扫描仪兼容的 Insightec ExAblate Neuro 临床聚焦超声系统。它将用于治疗脑肿瘤、阿尔茨海默病等患者。van Vuurden 博士说,他的临床前实验证实,可以使用聚焦超声将阿霉素输送到脑干,但该方案并没有提高存活率。小鼠模型中的药代动力学(阿霉素的快速清除)存在问题。
摘要:通过不同的作用机制对癌症进行化学/基因治疗的组合已经出现,以增强癌症的治疗功效,并且由于缺乏高效和生物相容性的纳米载体,仍然仍然是一项具有挑战性的任务。在这项工作中,我们报告了一种新的纳米系统,基于两亲性磷齿状(1-C12G1)胶束胶束,以用于三层microRNA-21抑制剂(miR-21i)和阿霉素(DOX)(DOX),用于三重阴性乳腺癌的联合治疗。制备了长线性烷基链和十个质子化吡咯烷表面基的两亲磷齿状树状,并证明在水溶液中形成胶束,并具有103.2 nm的水动力大小。胶束被证明是稳定的,能够封装具有最佳负载含量(80%)和封装效率(98%)的抗癌药物DOX,并且可以压缩miR-21i以形成双流线物以使其具有良好的稳定性,以抗退化。1-C12G1@dox/miR-21i流媒体的共传递系统具有pH依赖性的DOX释放曲线,并且可以很容易被癌细胞吞噬以抑制它们,因为它们在静脉内静脉内注射后被进一步验证,该抗癌机构得到了进一步验证,以处理静脉内的三重乳液模型。具有在研究剂量下经过验证的生物相容性,可以开发出开发的两亲性磷状胶束,以作为一种有效的纳米医学制剂,用于协同癌症治疗。
材料和方法:通过14天给予15 mg/kg的阿霉素给予15 mg/kg的阿霉素诱导慢性心力衰竭,重量为190-220G(总计85)。The investigated drugs were administered after doxorubicin course for 30 days: Hypertril at an experimentally substantiated dose of 3.5 mg/kg, Metoprolol succinate 15 mg/kg, Nebivolol 10 mg/kg, Carvedilol 50 mg/kg, Bisoprolol 10 mg/kg.使用计算机分析仪CardioCOM-2000plus(Kai-Medica,Ukraine)分析药物管理下的药物治疗(40 mg/kg),电型 - 三局(ECG)和自主性调节(ARHR)。使用标准统计软件包“ Windows 6.0的Statistica”(Statsoftinc。,№AXXR712D833214FAN5),“ SPSS 16.0”和“ Microsoft Office Excell 2003”计算了研究结果。
黑色素瘤是最具侵袭性的皮肤癌,人们已研究了多种治疗方法来治疗这种疾病,但耐药性仍然是传统疗法失败的重要因素。本文描述了海藻酸盐、壳聚糖、普鲁兰多糖及其组合纳米乳剂的开发、优化和特性,以及它们作为药物输送平台在黑色素瘤治疗中的潜在应用。设计了一种新型纳米乳剂输送系统,并通过确定体外药物释放、细胞活力 (MTT)、细胞凋亡 (ELISA) 和共聚焦显微镜对其进行了评估。对纳米乳剂对 BRAF 突变黑色素瘤 (A375) 和角质形成细胞 (HaCaT) 细胞的影响进行了比较分析,并选择“普鲁兰多糖-壳聚糖”纳米乳剂作为黑色素瘤药物输送的方法。用载有阿霉素的最佳纳米乳剂治疗 72 小时后,黑色素瘤细胞凋亡诱导率增加至 90%。同样,在同样的治疗中,黑色素瘤细胞的存活率降低了 70%。更重要的是,用阿霉素处理的 A375 细胞存活率为 100%,而用载有阿霉素的纳米乳剂处理的细胞存活率仅为 30%。所取得的结果表明药物载体的聚合物组合的重要性以及药物释放模式对治疗效率的影响。这为消除药物外排相关的化学耐药性提供了潜力。
▼该药物会受到其他监测。这将允许快速识别新的安全信息。医疗保健专业人员被要求报告任何可疑的不良反应。有关报告可疑反应的报告的信息,请参见SMPC的第4.8节,或向当地的Roche药物安全联系人报告:https://www.roche.com/products/local_safety_reporting.htm。1L,第一线; 2L,二线; 3L,第三线;汽车,嵌合抗原受体; CHOP,利妥昔单抗,环磷酰胺,阿霉素,长春新碱和泼尼松; DLBCL,弥漫性大B细胞淋巴瘤; HDCT-ASCT,高剂量化疗和自体干细胞移植; OS,整体生存; PFS,无进展的生存; Pola-R-CHP,Polatuzumab Vedotin和Rituximab加环磷酰胺,阿霉素和泼尼松; R,利妥昔单抗;; r/r,复发/难治; SOC,护理标准; SMPC,产品特征摘要。
补充图 4 。药物与抑制剂在 THP-1(洋红色)和 MM6(橙色)细胞中的协同联合治疗作用。(a)两次重复分析 PGL-13 与 Ara-C 联合治疗对细胞活力的抑制作用。组合指数 (CI) 值为(左)0.67 和(右)0.47。(b)两次重复测量 PGL-14 和 Ara-C 的联合治疗作用,CI 值为(左)0.58 和(右)0.59。(c)PGL-13 与阿霉素联合使用的抑制作用,CI = 0.53。(d)PGL-14 与阿霉素的抑制作用,CI = 0.76。(e)麦芽糖和 Ara-C 的联合治疗作用,CI = 0.82。 (f) PGL-13 和 Ara-C 抑制,CI = 0.62。(g) PGL-14 和 Ara-C 抑制,CI = 0.53。值与 DMSO 或培养基对照进行比较。条形图显示平均值 + SD,n = 3。药物以 IC 25 浓度使用,协同效应已用 S 标记。
目的:化疗是晚期结肠癌的主要治疗方法,但其疗效往往受到严重毒性的限制。以选择性药物输送系统 (SDDS) 形式的靶向治疗是减少副作用的重要策略。在这里,我们旨在设计一种具有实际应用潜力的新型 SDDS,使用生物相容性组件和可扩展的生产工艺,将阿霉素 (Dox) 靶向输送到结肠癌细胞。方法:SDDS 由自组装 DNA 纳米十字架 (Holliday 连接或 HJ) 制成,该十字架由四个 AS1411 适体 (Apt-HJ) 功能化并装载 Dox。结果:Apt-HJ 的平均尺寸为 12.45 nm,zeta 电位为 − 11.6 mV。与单价 AS1411 适体相比,四价 Apt-HJ 显示出与靶癌细胞 (CT26) 更强的结合。将 Dox 插入 Apt-HJ 的 DNA 结构中形成 Apt-HJ 与阿霉素的复合物 (Apt-HJ-Dox),每个复合物携带约 17 个 Dox 分子。共聚焦显微镜显示,Apt-HJ-Dox 选择性地将 Dox 递送到 CT26 结肠癌细胞中,但不递送到对照细胞中。此外,Apt-HJ-Dox 在体外实现了对 CT26 癌细胞的靶向杀伤,并减少了对对照细胞的损伤。重要的是,与游离 Dox 相比,Apt-HJ-Dox 显著增强了体内抗肿瘤效果,而不会增加副作用。结论:这些结果表明 Apt-HJ-Dox 在结肠癌的靶向治疗中具有应用潜力。关键词:结肠癌,靶向治疗,适体,霍利迪连接体,阿霉素