我们利用变分量子本征值求解器 (VQE) 探索了存在拓扑 θ 项的格子 Schwinger 模型中的一阶相变。使用两种不同的费米子离散化,即 Wilson 和交错费米子,我们开发了适用于这两种离散化的参数化模拟电路,并通过在没有噪声的情况下模拟经典的理想 VQE 优化来比较它们的性能。然后在 IBM 的超导量子硬件上准备通过经典模拟获得的状态。应用最先进的误差缓解方法,我们表明可以从量子硬件可靠地获得电场密度和粒子数,这些可观测量揭示了模型的相结构。为了研究连续外推所需的最小系统尺寸,我们使用矩阵乘积状态研究连续极限,并将我们的结果与连续质量微扰理论进行比较。我们证明,考虑附加质量重正化对于提高较小系统尺寸所能获得的精度至关重要。此外,对于我们研究的可观测量,我们观察到了普适性,并且两种费米子离散化都产生了相同的连续极限。
摘要:提出了一种实时飞行模拟工具,该工具使用虚拟现实头戴式显示器 (VR-HMD),用于在超视距 (BLOS) 条件下运行的遥控飞艇。具体而言,VR-HMD 是为在低空/高空飞行的平流层飞艇开发的。提出的飞行模拟工具使用 FlightGear 飞行模拟器 (FGFS) 中飞艇的相应空气动力学特性、浮力效应、质量平衡、附加质量、推进贡献和地面反作用。VR 耳机与包含每个按钮的实时方向/状态的无线电控制器(也经过模拟以提供更好的态势感知)以及为提供所需飞行数据而开发的平视显示器 (HUD) 一起连接到 FGFS。在这项工作中,开发了一个系统,将 FGFS 和支持 VR 的图形引擎 Unity 实时连接到 PC 和无线 VR-HMD,数据传输之间的延迟最小。我们发现,FGFS 以 0.01 秒的周期写入 CSV 文件时存在平衡。对于 Unity,文件每帧读取一次,相当于大约 0.0167 秒(60 Hz)。还进行了一项基于 NASA TLX 问卷的类似评级技术的测试程序,该问卷可确定飞行员在完成分配的任务时的可用心理能力,以确保拟议的 VR-HMD 的舒适性。因此,对使用桌面模拟器和 VR-HMD 的飞机控制进行了比较
摘要:提出了一种使用虚拟现实头戴式显示器 (VR-HMD) 的实时飞行模拟工具,用于在超视距 (BLOS) 条件下运行的遥控飞艇。具体来说,VR-HMD 是为在低/高空飞行的平流层飞艇开发的。提出的飞行模拟工具使用 FlightGear 飞行模拟器 (FGFS) 中飞艇的相应空气动力学特性、浮力效应、质量平衡、附加质量、推进贡献和地面反应。VR 耳机与包含每个按钮的实时方向/状态的无线电控制器一起连接到 FGFS,这也被模拟以提供更好的态势感知,以及开发用于提供所需飞行数据的平视显示器 (HUD)。在本研究中,开发了一个系统,将 FGFS 和支持 VR 的图形引擎 Unity 实时连接到 PC 和无线 VR-HMD,数据传输之间的延迟最小。发现 FGFS 以 0.01 秒的周期写入 CSV 文件时存在平衡。对于 Unity,每帧读取一次文件,相当于大约 0.0167 秒(60 Hz)。还根据 NASA TLX 问卷进行了类似的评级技术测试程序,该问卷可确定飞行员在完成分配的任务时的可用心理能力,以确保拟议的 VR-HMD 的舒适性。因此,使用桌面模拟器和 VR-HMD 工具对飞机控制进行了比较。结果表明,该系统的当前迭代非常适合在安全和沉浸式环境中训练飞行员使用类似系统。此外,这种先进的便携式系统甚至可以提高飞行员的态势感知能力,并允许他们在模拟中使用相同的数据传输程序完成相当一部分实际飞行测试。VR-HMD 飞行模拟器还旨在表达地面控制站 (GCS) 概念,并使用机载摄像机广播的真实环境实时传输飞行信息以及视点 (POV) 视觉效果。