巴伦小姐是纽约州奈亚克市威廉·韦尔斯·巴伦的女儿,她的祖先是美国海军上将詹姆斯·巴伦,他在决斗中杀死了美国海军英雄斯蒂芬·迪凯特。沙漠谋杀案中的司机被追捕 亚利桑那州凤凰城,5 月 25 日(_ — 马里科帕县检察官 Lloyd J. Andrews 今天表示,有关洛杉矶 Prank J. Fanning 沙漠谋杀案的事实,他的尸体于周六在吉拉本德附近被发现,显然有必要对这名驾驶血迹斑斑、有弹痕的汽车的司机提起谋杀指控,他被得克萨斯州沃斯堡当局关押一天后释放。这名在发现 Fanning 尸体之前被释放的男子预计今天会再次被捕。昨晚,四个西南州的警察联手缉拿这名司机。女演员的司机因逮捕令被判入狱 29 岁的 NSgro 女演员 Constance Bennett 的司机 Clifton Bennett 今天没有被关在市监狱,唯一的原因是他的朋友为他交了 150 美元的保释金。 , . Bennett,根据警方宣誓的投诉。选择无视两张传票,要求他出庭接受法官 CAM Spencer 的审判,第一张传票由 Carl Morton 于 3 月 3 日发出,第二张传票由 Cliff Hayden 于 4 月 18 日发出,当时他被指控在 15 英里限速区以每小时 53 英里的速度行驶。
5. 囊泡技术的应用非常广泛,可用于治疗多种疾病。 6. 囊泡作为药物载体 囊泡也已用作碘比醇的载体,它是一种用于X 射线成像的诊断剂。外用囊泡可作为溶解基质、作为持续释放皮肤活性化合物的局部储库、作为渗透促进剂、作为调节药物全身吸收的限速膜屏障。 7. 药物靶向 囊泡最有用的方面之一是其靶向药物的能力。囊泡用于将药物靶向到网状内皮系统。网状内皮系统 (RES) 特别吸收囊泡囊泡。囊泡的吸收受循环血清因子(称为调理素)控制。这些调理素标记囊泡以供清除。这种药物定位可用于治疗已知转移到肝脏和脾脏的动物的肿瘤。这种药物定位也可用于治疗肝脏的寄生虫感染。类囊泡还可用于将药物靶向除 RES 以外的器官。载体系统(如抗体)可以附着在类囊泡上,因为免疫球蛋白会主动与类囊泡的脂质表面结合,从而将其靶向特定器官。8. 抗肿瘤治疗许多抗肿瘤药物会引起严重的副作用。类囊泡可以改变代谢,延长药物的循环和半衰期,从而减少药物的副作用。类囊泡可降低肿瘤的扩张速度,提高血浆水平,同时降低消除速度。[25-28]
加州帕萨迪纳——在夏末秋初,亲朋好友都在计划度假时,帕萨迪纳警察局提醒大家在清醒的状态下出行,保证安全。无论你选择如何庆祝夏末和劳动节周末,一定要负责任地庆祝。采取必要的预防措施,系好安全带、远离干扰、遵守限速、切勿酒驾,保护自己和家人的安全。为了在繁忙的夏末和劳动节周末旅游季节保护社区安全,帕萨迪纳警察局将在 8 月 18 日至劳动节(9 月 6 日)期间增派警力巡逻,寻找涉嫌酒驾和/或毒驾的司机。加大打击酒驾的力度是全国执法运动“清醒驾驶,否则被拦下”的一部分。除了巡逻,帕萨迪纳警察局还将于 8 月 20 日下午 6:00 至凌晨 3:00 在帕萨迪纳市内某个未公开的地点设立酒驾检查站。帕萨迪纳警察局中尉安东尼·鲁索表示:“酒驾非常危险,会严重危害您自己和周围的人。如果您在接下来的几周内要进行公路旅行,请做出明智的选择,像您最亲密的朋友和家人一样开车。” 2019 年劳动节假期期间,加州共有 45 人在车祸中丧生,仅在劳动节周末 78 小时的执法期间,加州公路巡警队 (CHP) 就逮捕了 1,000 多名酒驾者。
摘要 动机:泛素化广泛参与蛋白质稳态和细胞信号传导。泛素 E3 连接酶是泛素化的关键调节剂,可识别和招募特定的泛素化靶标,用于泛素转移反应的最终限速步骤。了解泛素 E3 连接酶活性将提供对泛素化途径上游调节剂的知识,并揭示生物过程和疾病进展中的潜在机制。基于质谱的蛋白质组学的最新进展使得能够定量深入分析泛素组。然而,泛素组动力学和途径活性的功能分析仍然具有挑战性。结果:在这里,我们开发了 UbE3-APA,一种用于 Ub E3 连接酶活性分析的计算算法和独立的基于 Python 的软件。 UbE3-APA 结合集成注释数据库和统计分析,基于定量泛素组蛋白质组学数据集识别出显著激活或抑制的 E3 连接酶。将该软件与已发表的定量泛素组分析进行基准测试,证实了 SPOP 酶活性是通过过表达和突变进行的遗传操作。该算法在大量泛素化蛋白质组学研究的重新分析中的应用揭示了 PARKIN 的激活以及其他 E3 连接酶的共同激活在线粒体去极化诱导的线粒体自噬过程中。我们进一步展示了该算法在基于 DIA 的定量泛素组分析中的应用。可用性:源代码和二进制文件可在以下网址免费下载:https://github.com/Chenlab-UMN/Ub-E3-ligase-Activity-Profiling-Analysis,以 python 实现并支持 Linux 和 MS Windows 联系方式:yuechen@umn.edu 补充信息:补充数据可用。
基本描述 Ad Astra 能源与环境服务公司成立于 2007 年,致力于探索绿色氢能和燃料电池在电动汽车中的应用。该公司以母公司 Ad Astra 火箭公司在类似太空应用技术方面的专业知识为基础。Ad Astra 的首个示范项目“哥斯达黎加氢能运输生态系统”于 2018 年在瓜卡纳斯特省开始运营。绿色氢能由其自有太阳能发电场(78 kW)和风力涡轮机(5 kW)以及 5.9 kW 质子交换膜 (PEM) 电解器产生的电力生产。这种绿色氢能随后被用于哥斯达黎加第一辆氢能运输车辆“Nyuti”公交车。Nyuti 公交车使用容量为 38 公斤 (kg) 压缩氢气的氢气罐,可运送 35 名乘客,续航里程为 338 公里 (km),限速为 110 公里/小时。自 2019 年以来,绿色氢能项目一直为在瓜纳卡斯特旅游区运营的四辆丰田 Mirai 车队提供动力。哥斯达黎加氢能运输生态系统项目在过去 10 年内开发完成,总投资额为 880 万美元(其中 Ad Astra 投资 49%,哥斯达黎加政府投资 35%,非政府组织投资 9%,其他投资和赞助投资 7%),包括 2019 年更换循环末期电解器和 H70(70 兆帕)氢气分配器。这是一个小规模试点项目,旨在测试该技术并在实践中学习。从该项目中学到的知识对于了解如何在热带气候下运营绿色氢能基础设施以及如何降低高温相关风险至关重要。
亲爱的编辑部 芹菜 ( Apium graveolens L.) 是伞形科的一种具有重要经济价值的叶菜作物,在世界各地广泛种植 [1]。生产上需要通过传统或现代分子遗传改良手段对芹菜进行品质、抗病虫害和晚抽薹等改良。常规育种遗传改良受限于育种周期长、随机性,因此基因工程育种的必要性凸显。精准的基因组编辑技术有可能突破常规育种的局限性。另外,芹菜功能基因组学的研究也对基因组编辑技术的发展提出了更高的要求。相对于其他主要作物,遗传转化体系不成熟和基因编辑技术不够发达已成为芹菜基础研究和遗传改良的瓶颈。 CRISPR/Cas9 系统是一种 RNA 引导的基因组编辑工具,由 Cas9 核酸酶和单向导 RNA(sgRNA)组成,可实现高效的靶向修饰[2,3]。由于其高效性和准确性,CRISPR/Cas9 诱导的基因组编辑已广泛应用于多种植物物种,以改善植物抗性和产量,并研究基因在控制农艺性状中的作用[2-4]。本文首次报道成功建立基于 CRISPR/Cas9 的基因组编辑系统,并通过在芹菜品种‘晋南诗芹’中靶向敲除八氢番茄红素去饱和酶基因(AgPDS)来验证该系统的有效性。 PDS 是类胡萝卜素生物合成中的一种限速酶,它催化无色八氢番茄红素转化为ζ-胡萝卜素,ζ-胡萝卜素进一步转化为番茄红素。它通常用作视觉标记来检测
1.6 获得适当的人员、实验室空间、设备和化学品供应:需要专业实验室使用合适的诊断机器和熟练的专业人员来分析每个样本。我们很幸运,全国拥有大量这种高度专业化的机器(提取和 PCR)(仅 NHS 实验室就有 500 多台,英国公共卫生部实验室有近 100 台,大学和研究机构还有更多)。挑战在于全球缺乏全面运行端到端测试流程所需的材料,特别是有助于确保这些测试具有高灵敏度和特异性的试剂、用于验证的拭子,以及将特定材料与可用的不同机器相匹配的挑战。大多数这些高科技测试平台都是“封闭的”,这意味着这些材料只能由与机器相同的制造商提供。因此,我们依赖全球制造商来非常迅速地增加其特定试剂和试剂盒的数量。我们正在与他们合作,增加这些专有试剂的供应,最大限度地提高英国的全球分配,并创造这些组件的可持续供应,包括在英国建立本地制造基地。在可能的情况下,我们正在“开放”封闭平台,以利用合适试剂的替代供应商。在我们有开放平台的地方,我们正在迅速扩大本地组件供应并寻找创新替代品。利用我们在英国的世界级研究机构,我们一直在开发传统方法的替代品,试图克服 RNA 提取等限速步骤。我们还在迅速研究如何利用大学、研究机构和私人实验室的能力和技能,特别是在他们的平台开放的情况下,利用新兴的成功模式(如克里克研究所)研究对患者数据的影响。全国各地的实验室都准备扩大测试规模。有些实验室已经
具有竹节粒结构、顶部覆盖 Al 3 Ti 层并以 W 柱终止的 Al(Cu) 细线是 Si 集成电路中越来越常见的一类互连线。这些线易受跨晶电迁移引起的故障影响。电迁移引起的应力演变可以用一维扩散-漂移方程建模,该方程的解需要了解传输参数。通过开发和执行使用在氧化 Si 基板上制造的单晶 Al 互连线的实验,明确地确定了 Al 中 Al 和 Cu 的跨晶扩散和电迁移特性。在顶部覆盖多晶 Al 3 Ti 覆盖层的钝化 Al 单晶线(2.0 μm 宽,0.4 μm 厚)上进行了加速电迁移寿命测试。覆盖层由 Al 与 Ti 覆盖层的反应形成。电迁移引起失效的激活能确定为 0.94±0.05 eV。以前对没有 Al 3 Ti 覆盖层的 Al 单晶的研究得出的激活能为 0.98±0.2 eV,寿命相似。结论是,Al 3 Ti 覆盖层不会影响跨晶电迁移的动力学和机制。此外,这些结果表明,单晶 Al 互连线电迁移引起失效的限速机制不是扩散,或者令人惊讶的是,Al 沿 Al/Al 3 Ti 界面的扩散率大约等于或低于 Al 沿 Al/AlO 界面的扩散率。还通过实验研究了 Cu 在单晶 Al 线中的扩散和电迁移特性。测试结构由平行线(5.0 μm 宽,0.4 μm 厚)组成,交替线终止于共用接触垫。铜被局部添加到所有线的相同区域,并通过分析 Cu 的浓度分布来表征温度和电流密度的影响
代谢重编程在癌症发展和患者生存中起关键作用。与其他B细胞恶性肿瘤相比,慢性淋巴细胞性白血病(CLL)的代谢不是高度活跃(1);然而,它发展出代谢修饰的基础,其进展和对药物的抵抗力(2-4)。这些修饰中的一些影响氧化磷酸化(OXPHOS),并帮助癌细胞使用葡萄糖底物的替代方法来产生三磷酸腺苷(ATP)(ATP)(5)。ATP是OXPHOS的最终产品,提供了满足CLL细胞高能量需求的燃料。 已经表明,ATP的药理耗竭抑制RNA的合成并导致CLL细胞的凋亡(6)。 oxphos取决于三羧酸(TCA)循环的活性,该循环产生了电子传输链的能量前体。 由葡萄糖产生的乙酰辅酶A是TCA循环中最著名的底物。 然而,谷氨酰胺是癌细胞中Oxphos的主要驱动力,而谷氨酰胺限制,而不是葡萄糖有助于降低氧气摄取,并介导癌细胞的凋亡(7、8)。 OXPHOS无葡萄糖的加油所需的第一步是谷氨酰胺向谷氨酸的转化。 随后,谷氨酸为合成-Ketoglutarate(TCA循环的关键代谢产物)提供了底物(9)。 谷氨酰胺代谢中的限速线粒体酶是谷氨酰胺酶,它催化谷氨酰胺转化为谷氨酸和氨。 谷氨酰胺酶具有2种同工型:肾型谷氨酰胺酶-1(GLS-1)和肝型谷氨酰胺酶-2。ATP是OXPHOS的最终产品,提供了满足CLL细胞高能量需求的燃料。已经表明,ATP的药理耗竭抑制RNA的合成并导致CLL细胞的凋亡(6)。oxphos取决于三羧酸(TCA)循环的活性,该循环产生了电子传输链的能量前体。由葡萄糖产生的乙酰辅酶A是TCA循环中最著名的底物。然而,谷氨酰胺是癌细胞中Oxphos的主要驱动力,而谷氨酰胺限制,而不是葡萄糖有助于降低氧气摄取,并介导癌细胞的凋亡(7、8)。OXPHOS无葡萄糖的加油所需的第一步是谷氨酰胺向谷氨酸的转化。随后,谷氨酸为合成-Ketoglutarate(TCA循环的关键代谢产物)提供了底物(9)。谷氨酰胺代谢中的限速线粒体酶是谷氨酰胺酶,它催化谷氨酰胺转化为谷氨酸和氨。谷氨酰胺酶具有2种同工型:肾型谷氨酰胺酶-1(GLS-1)和肝型谷氨酰胺酶-2。GLS-1反过来具有2种替代剪接变体:谷氨酰胺酶C(GAC)和肾脏谷氨酰胺酶(KGA)。谷氨酰胺酶C的催化活性高于肾脏谷氨酰胺酶,通常在白血病细胞中上调(10,11)。已经表明,急性髓细胞性白血病(AML)细胞系中GLS-1基因的敲低破坏了谷氨酰胺驱动的OXPHOS,导致细胞增殖减少和凋亡诱导(10)。这表明改变使用谷氨酰胺的药物可能对CLL治疗有用。CLL细胞高度依赖于B细胞受体途径,该途径为细胞发育和成熟提供了信号。B细胞受体刺激的终点是NF-K B和MAP激酶途径的激活,这导致CLL细胞的增殖,迁移和存活。布鲁顿酪氨酸激酶(BTK)在通过B细胞 - 受体信号级联的信号转导中起关键作用。因此,它成为共价BTK抑制剂(例如ibrutinib)的有效靶标(12)。CLL中最常见的细胞遗传突变是13Q缺失(DEL [13Q]),在约50%的CLL病例中发现(13,14)。在DEL [13Q] CLL细胞中,删除了microRNA(miR)簇miR-15a/miR-16-1,导致其肿瘤抑制功能的丧失以及抗凋亡蛋白B细胞淋巴瘤-2(BCL-2)和髓样细胞白血病1(MCL-1)的过表达。失调的BCl-2表达有助于白血病细胞的存活和积累,而MCL-1蛋白对CLL细胞产生保护作用,抑制了凋亡(15、16)。因此,Bcl-2抑制剂venetoclax
摘要:通过密度泛函理论 (DFT) 计算,我们得到了 Cu(II) 催化和酰胺恶唑啉 (Oxa) 定向 C(sp 2 )–H 官能化反应的统一机理。所研究的七个反应(如 C–H 键乙烯基化、苯基化、三氟甲基化、胺化、炔基化和羟基化)的共同步骤是络合、N–H 和 C–H 键去质子化以及 Cu(II)/Cu(II) ® Cu(I)/Cu(III) 歧化步骤,从而生成 Cu(III) 中间体。所研究的 C–H 官能化反应由 Cu(III) 中间体引发,其机理取决于偶联伙伴的性质。对于不带酸性质子的乙烯基或苯基-Bpin(称为 I 型反应),偶联伙伴是原位生成的(通过添加阴离子)阴离子硼酸盐,它们与 Cu(III) 中间体配位并进行协同金属转移和还原消除以形成新的 CC 键。相反,对于带酸性质子的咪唑、芳香胺、末端炔烃和水(称为 II 型反应),真正的偶联伙伴是它们原位生成的去质子化衍生物,它们与铜配位并通过还原消除途径生成具有 C–Y 键(Y = C、N、O)的最终产物。C(sp 2 )–H 键三氟甲基化与 TMSCF 3 被认为是一种特殊情况,位于 I 型和 II 型反应类型之间。该反应的真正偶联伙伴是原位生成的(通过 CF 3 – 到 OH – 配体交换)CF 3 – 阴离子,它与 Cu(III) 中间体结合并发生 C–CF 3 还原消除。我们的计算与实验 KIE 研究一致,该研究已确定 C–H 键活化是所有反应的限速步骤。