自1980年代以来,椭圆曲线密码学成长为一个巨大的场。在这些加密应用的核心中是椭圆形曲线形成亚伯群的事实。也就是说,如果e是椭圆曲线,而(x 1,y 1)和(x 2,y 2)是曲线上的2个点,则有一个显式的添加定律,使我们在e上获得了第三点。实际上,更一般性的陈述存在,对于任何Abelian组,一个人都可以设计一个加密系统,类似于e产生的系统。这一事实导致了搜索阿贝利安群体的其他例子。一个这样的示例是任何曲线x的雅各布雅克(x)。尽管有安全挑战设计用于高属曲线的加密系统,但仍然有一个自然的问题,是否可以针对JAC(X)制定明确的加法定律。据我们所知,此类法律没有简单的表述。Gaudry在[4]中发现了G = 2个明确的添加法律,对于一般曲线,一个算法归因于Florian Hess [5]和Makdisi [6]。,但是这些算法并不像g = 1,2中的算法那样简单。一个例外是由方程式给出的曲线的子类:y n = x s + p(x,y)其中deg y p(x,y) 有关(N,S)曲线的Jacobi反面问题的明确解决方案,请参见[1]。 在北约会议上1托尼·沙斯卡(Tony Shaska)提出了一个问题,这些明确的法律是否可以以免费和方程式的方式制定。有关(N,S)曲线的Jacobi反面问题的明确解决方案,请参见[1]。在北约会议上1托尼·沙斯卡(Tony Shaska)提出了一个问题,这些明确的法律是否可以以免费和方程式的方式制定。可能将其用于密码学的应用是建立代数品种交集给出的加密系统(例如,在第二属中)。另一个可能的应用是寻找需要明确添加法律的显式同种基因。我们在这个小笔记中的目标是积极回答Shaska的问题(至少对于非特殊除数)。我们将熟练[2]来解决代数雅各比逆问题,并使用它来制定明确的加法法律,而我们认为,这比赫斯和马克迪西制定的法律更简单。我们在C以上工作,尽管可以在任何领域进行构造。本注释的结构如下:在第1节中,我们将制定并解决Alegbraic Jacobi反面问题。在第2节中,我们应用第1节的结果以获取加法法律。
TGT形式的实际数字:自然数,整数,数字线上的理性数字的表示。通过连续的放大倍率在数字线上表示终止 /非终止重复小数的代表。有理数作为重复 /终止小数。非经常性 /非终止小数的示例。存在非理性数字(非理性数字)及其在数字线上的表示。解释每个实际数字都由数字行上的唯一点表示,相反,数字行上的每个点代表一个唯一的实际数字。具有整体权力的指数定律。具有正真实基础的理性指数。实数的合理化。欧几里得的分区引理,算术的基本定理。根据终止 /非终止重复小数的延长有理数的扩展。基本数理论:Peano的公理,诱导原理;第一本金,第二原理,第三原理,基础表示定理,最大的整数函数,可划分的测试,欧几里得的算法,独特的分解定理,一致性,中国余数定理,数量的除数总和。Euler的基本功能,Fermat和Wilson的定理。矩阵:R,R2,R3作为R和RN概念的向量空间。每个人的标准基础。线性独立性和不同基础的例子。R2的子空间,R3。 翻译,扩张,旋转,在点,线和平面中的反射。 基本几何变换的矩阵形式。R2的子空间,R3。翻译,扩张,旋转,在点,线和平面中的反射。基本几何变换的矩阵形式。对特征值和特征向量的解释对这种转换和不变子空间等特征空间的解释。对角线形式的矩阵。将对角形式还原至命令3的矩阵。使用基本行操作计算矩阵倒置。矩阵的等级,使用矩阵的线性方程系统的解决方案。多项式:一个变量中多项式的定义,其系数,示例和反示例,其术语为零多项式。多项式,恒定,线性,二次,立方多项式的程度;单一,二项式,三项官员。因素和倍数。零。其余定理具有示例和类比整数。陈述和因素定理的证明。使用因子定理对二次和立方多项式的分解。代数表达式和身份及其在多项式分解中的使用。简单的表达式可还原为这些多项式。两个变量中的线性方程:两个变量中的方程式简介。证明两个变量中的线性方程是无限的许多解决方案,并证明它们被写成有序成对的真实数字,代数和图形解决方案。两个变量中的线性方程对:两个变量中的线性方程。不同可能性 /不一致可能性的几何表示。解决方案数量的代数条件。 二次方程:二次方程的标准形式。解决方案数量的代数条件。二次方程:二次方程的标准形式。通过取代,消除和交叉乘法,将两个线性方程对两个变量的求解。