多羟基甲酸酯,称为非异氰酸酯聚氨酯(NIPU),是通过胺固化的多膜循环碳酸盐来制造的,可从多种合成和生物基于生物的环氧树脂和二氧化合物中通过碳二氧化物的化学固定固定。同氰酸酯单体对水分敏感高度敏感,而NIPU加工可耐受性和各种官能团。这对开发高级功能填充剂非常有益,因为不需要特殊的干燥程序或其他预处理。在新兴纳米填料中,石墨烯由于其出色的机械,热和电性能而起着重要作用。作为2D碳聚合物,由缺陷 - 游离SP 2-杂交碳单层组成,石墨烯具有1 TPA的非凡刚度,[6] 5000 W m-1 K-1 K-1,[7]的热导率为5000 W m-1 K-1,[7] [7] 6000 S Cm-1 [8]和2600 MOxipe的电导率。[9]因此,石墨烯对具有出色的机械,热和电性能的多功能聚合物纳米材料的发展具有巨大的希望。[10]与石墨烯相关的纳米材料,例如多壁碳纳米管,石墨氧化物(GO)或热还原的石墨氧化物(TRGO)(TRGO),以改善各种多种聚生物材料的机械和电气性能,包括多种聚生物材料[11,12,12]和Polyure-ysess和Polyure-ysess和Polyure-ysess和Polyure-ysess和Polyure-yses和Polyure-yses。[13,14]其他突出的例子是针对传感器应用定制的石墨烯/弹性体纳米复合材料。这种方法已由Novoselov等人开创。[15–19]尽管边缘量的纳米填料可以提供重大的财产改进,但纳入较高量的基于差异的填充剂通常会在处理和成本效率方面构成问题,从而限制其在轻量级构造中的应用。为了降低成本并改善加工,已经进行了几次尝试,以开发工业可行的合成路线,以定制与石墨烯相关的材料作为功能填充剂。几种自上而下的技术采用石墨作为丰富的市售中间体,用于去角质几层或单层石墨烯。使用其苏格兰胶带技术从石墨表面剥离单层石墨烯。[20]通常,从石墨中去角质需要很高的剪切力才能克服堆积在石墨>的石墨烯层之间的范德华吸引力
陶瓷金属复合材料具有重量轻、成本低、耐磨、耐腐蚀、强度高等特殊性能,是传统材料中颇具前途的先进材料。搅拌铸造是制造铝基复合材料成本最低、最简单的方法之一。搅拌铸造的主要局限性是增强陶瓷颗粒(团聚体)在金属基体中的分布不良、制造过程中复合材料的孔隙率以及陶瓷颗粒与熔融金属的润湿性。提高陶瓷金属基复合材料 (CMMC) 的搅拌铸造参数是许多研究的主要目标。本文将详细讨论搅拌铸造工艺,其中包括影响增强体均匀分布、制造过程中复合材料的孔隙率以及陶瓷金属基复合材料的力学性能的参数。
表1显示了HS-8005系列阵容。为了减少划痕,日立化学化学已经开发了各种具有优化粒径和分布的产品。使用HS-8005-X3,抛光划痕可以减少到HS-8005的1/10或更少。我们建立了生产技术,以精心控制粒度和陶瓷颗粒的分布,以提供稳定的优质产品,并拥有陶瓷泥浆市场的全球最高份额。为了满足进一步减少刮擦的要求,Hitachi Chemical以NC系列形式开发了超细颗粒,以进行下一代浆液。虽然将常规的陶瓷颗粒粉碎以进行微插曲,但NC系列颗粒的大小是通过晶体生长法的泥浆,由于大尺寸颗粒而导致的划痕最小化。图3显示了HS-NC和HS-8005的外观。HS-NC是一种超细,透明的纳米级粒子。
™ 工艺使这些先进的陶瓷材料无需软金属粘合剂即可组合,而使用传统烧结技术的碳化钨/钴则需要软金属粘合剂。ROC 工艺使喷嘴能够使用非常短的固结周期形成,从而最大限度地减少陶瓷颗粒在长时间暴露于高温时自然增大的趋势。消除金属粘合剂并保持超细晶粒尺寸均有助于实现最佳喷嘴性能。最终得到的是一种极其耐用的材料,能够强烈抵抗磨料和腐蚀磨损。
摘要 本研究通过实验和数值模拟研究了双层高硬度钢复合附加装甲在 14.5 mm 穿甲弹以 900 m/s 速度冲击下的抗弹性能。本研究中的装甲系统由复合附加装甲和背板组成。复合附加装甲包括先进的氧化铝-氧化锆陶瓷,其采用 300 MPa 高压冷等静压 (CIP) 工艺制备,并在 1700 oC 高温下烧结。将烧结的先进陶瓷颗粒通过铸造工艺与聚氨酯橡胶结合。高硬度钢板安装于复合附加装甲上,复合附加装甲设计为背板,厚度为 6.0 mm 的双层,选用 Bisalloy HHA500。
通过固相反应制备了 Nd 3 + 掺杂的 Y 3 Al 2 Ga 3 O 12 石榴石陶瓷颗粒,并以此为原型研究 Nd 3 + 激活石榴石荧光粉作为低温和高温范围玻尔兹曼温度计的潜力。尽管近红外发射 Nd 3 + 激活荧光粉通常用于生物应用,但它们的实际用途受到生理温度范围内低灵敏度的阻碍。相反,100 800 K 范围内的光致发光分析在低温和高温范围内都表现出有趣的性能。事实上,通过利用 4 F 3 / 2 的斯塔克能级(Z 能级)以及 4 F 5 / 2 和 4 F 3 / 2 激发态的发射率,可以在同一材料中构建两个可靠的玻尔兹曼温度计,分别在低温范围(100 220 K)和高温(300 800 K)下工作。
为提高隔膜性能、降低热失控概率,在 PE/PP 膜上采用陶瓷颗粒(主要是氧化铝(Al 2 O 3 )颗粒)涂覆一层陶瓷层。涂覆的氧化铝层可防止隔膜在高温下发生故障,并阻止枝晶对隔膜的损坏。要求氧化铝必须足够纯净(通常纯度为 99.99%),因此金属阳离子杂质和金属杂质低于几 ppm。杂质可能会渗入电解液,并在电池运行过程中形成枝晶,或者形成加速枝晶形成的晶核。陶瓷层中的金属是短路的根源,无论是由原材料和制造过程引入的,还是在运行过程中形成的。陶瓷层中的杂质更有害,因为它靠近聚合物膜。
摘要:磨损驱动的工具故障是行业中的主要障碍之一。可以通过陶瓷增强金属基质复合材料的表面涂层来解决此问题。但是,最大陶瓷含量受破解的限制。在这项工作中,研究了功能分级的WC-陶瓷颗粒增强的星状6涂层的摩擦学行为。到此为止,研究了在室温和400°C下的耐磨性。此外,摩擦学分析得到了裂纹敏感性和硬度评估的支持,这对于使用陶瓷粒子增强的复合材料的处理至关重要。结果表明,可以使用功能分级的材料来增加最大可允许的WC含量,从而改善摩擦学行为,最著名的是在高温下。此外,在高温磨损测试中观察到了从磨料到氧化磨损的转变。关键字:摩擦,涂料,金属基质复合材料,功能分级的材料,高温,激光定向的能量沉积