当前的量子物理学理论和一般相对论本身不允许我们研究重力来源是量子的情况。在这里,我们提出了一种策略,以确定在叠加中存在质量配置的情况下对象的动力学,因此使用量子参考框架(QRF)转换。特别是,我们表明,只要不同分支中的质量配置是通过相对宽度的转换相关的,那么人们就可以使用QRF当前框架的扩展将质量结合质量变化的框架变化。假设在量子协调转换下的动态定律协方差,这允许使用已知的物理学来确定动力学。我们应用此过程来发现探针粒子的运动和质量构造附近的时钟的行为,从而发现了由超级位置的引力物体引起的时间扩张。与其他模型的比较表明,半经典的重力和重力塌陷模型不遵守量子坐标转换下动力学定律的协方差。
在本文中,我们提出了RSTAB,这是视频稳定框架的新型框架,该框架通过音量渲染整合了3D多帧融合。与传统方法背道而驰,我们引入了一个3D多框架透视图,以进行稳定的图像,从而解决了全框架生成的挑战,同时保存结构。我们的RSTAB框架的核心在于S Tabilized R Endering(SR),该卷渲染模块,在3D空间中融合了多帧信息。具体来说,SR涉及通过投影从多个帧中旋转的特征和颜色,将它们融合到描述符中以呈现稳定的图像。然而,扭曲的信息的精度取决于降低的准确性,这是受染色体区域显着影响的因素。为了响应,我们介绍了a daptive r ay r ange(arr)模块以整合深度先验,并自适应地定义了投影过程的采样范围。在方面上,我们提出了以光流的光流限制的限制,以进行精确的颜色,以实现精确的颜色。多亏了这三个模块,我们的rstab示例表现出了卓越的性能,与以前的视野(FOV),图像质量和视频稳定性相比,各种数据集的稳定器相比。
完全相关的量子理论需要说明量子参考框架的变化,其中量子参考框架是描述其他系统的量子系统。通过介绍一种关系形式主义,该形式主义与对称组G的元素构建坐标系,我们定义了一般的操作机构,用于在与g组相关的quantum参考框架之间可逆地变化。这将已知的运算符和提升的已知运算符概括为任意有限和紧凑的群体,包括非亚洲群体。我们显示在哪些条件下,人们可以将坐标选择分配给物理系统(形成参考框架)以及如何在它们之间进行可逆转换,从而在其他坐标系统的“叠加”之间提供转换。我们从关系物理学原理和参考框架的连贯变化中获得量子参考框架的变化。我们证明了一个定理,指出与这些原理一致的量子参考框架的更改是统一的,并且仅当参考系统带有G的左右常规表示。在对称组G是半直接乘积G =n⋊p或直接生产的情况下,我们还定义了经典和量子系统的参考框架的不可逆变化,或者提供了沿途量子参考系统的可逆性和不可逆变化的多个示例。fi-finally,我们将本工作中发展的关系形式主义和参考框架的变化应用于Wigner的朋友的场景,并使用与间接推理的间接推理使用测量运算符相对于关系的Quanth Quanth quantum Quanthimagrianics得出了相似的结论。
摘要 — 由于视频数据提供了多种实例的详细信息,使用视频数据进行事件检测变得越来越流行。这种流行增加了设备数量的使用和来自各种来源的数据量,这使得对异常事件的手动检测变得非常复杂,最近的研究要求高度及时和高度准确的自动化过程。因此,这项工作提出了一个三阶段解决方案来解决这个问题:使用混合分割过程进行物体检测,准确率为 97%,使用预先训练的机器学习模型检测物体,准确率为 98%,使用预测回归模型检测运动,平均时间为 58 纳秒。这项提议的工作已经展示了基准测试结果,并展示了高度准确的检测过程,使基于视频的监控更安全、更好。
摘要 — 由于视频数据提供了多种实例的详细信息,使用视频数据进行事件检测变得越来越流行。这种流行增加了设备数量的使用和来自各种来源的数据量,这使得对异常事件的手动检测变得非常复杂,最近的研究要求高度及时和高度准确的自动化过程。因此,这项工作提出了一个三阶段解决方案来解决这个问题:使用混合分割过程进行物体检测,准确率为 97%,使用预先训练的机器学习模型检测物体,准确率为 98%,使用预测回归模型检测运动,平均时间为 58 纳秒。这项提议的工作已经展示了基准测试结果,并展示了高度准确的检测过程,使基于视频的监控更安全、更好。
– 奥地利空间局 (ASA)/奥地利。 – 比利时科学政策办公室 (BELSPO)/比利时。 – 中央机械制造研究院 (TsNIIMash)/俄罗斯联邦。 – 中国卫星发射和跟踪控制总院、北京跟踪和通信技术研究所 (CLTC/BITTT)/中国。 – 中国科学院 (CAS)/中国。 – 中国空间技术研究院 (CAST)/中国。 – 英联邦科学与工业研究组织 (CSIRO)/澳大利亚。 – 丹麦国家空间中心 (DNSC)/丹麦。 – 航空航天科学和技术部 (DCTA)/巴西。 – 电子和电信研究院 (ETRI)/韩国。 – 欧洲气象卫星应用组织 (EUMETSAT)/欧洲。 – 欧洲通信卫星组织 (EUTELSAT)/欧洲。 – 地理信息和空间技术发展局 (GISTDA)/泰国。 – 希腊国家空间委员会 (HNSC)/希腊。 – 希腊空间局 (HSA)/希腊。 – 印度空间研究组织 (ISRO)/印度。 – 空间研究所 (IKI)/俄罗斯联邦。 – 韩国航空宇宙研究院 (KARI)/韩国。 – 通信部 (MOC)/以色列。 – 穆罕默德·本·拉希德航天中心 (MBRSC)/阿拉伯联合酋长国。 – 国家信息和通信技术研究所 (NICT)/日本。 – 国家海洋和大气管理局 (NOAA)/美国。 – 哈萨克斯坦共和国国家空间局 (NSARK)/哈萨克斯坦。 – 国家空间组织 (NSPO)/中国台北。 – 海军空间技术中心 (NCST)/美国。 – 荷兰空间办公室 (NSO)/荷兰。 – 粒子与核物理研究所 (KFKI)/匈牙利。 – 土耳其科学技术研究理事会 (TUBITAK)/土耳其。 – 南非国家航天局 (SANSA)/南非共和国。 – 空间与高层大气研究委员会 (SUPARCO)/巴基斯坦。 – 瑞典空间公司 (SSC)/瑞典。 – 瑞士空间办公室 (SSO)/瑞士。 – 美国地质调查局 (USGS)/美国。
摘要 一台高分辨率数字 300 帧相机飞越安大略省多伦多的一个试验场,以获取重叠图像以确定高程。分析了一对选定的 1320 x 1035 图像,总面积为 0.91 x 1.0a 平方公里,像素为 0.69 平方米。对图像中的 24 个点进行了实地测量,并应用了光束平差算法,仅使用三个控制点对图像进行相对和绝对定位。残差的加权平均 IIMS 误差为 1.138m (x)、t.sgom (y) 和 0.927m (z),总高程变化为 40m。尽管存在一些限制,例如缺乏相机校准,但仍获得了这种水平的精度。图像点选择困难,图像运动。这些结果鼓励进一步研究改进该技术并将其应用于大规模评估模型的开发。
集,31 | 1,...,i t t p p r i n ==和31 1 2 | 1,...,j t t p p r j n -− ==,通常表现出明显的
摘要 - 由于它们的高时间分辨率,对运动模糊的弹性提高以及非常稀疏的输出,事件摄像头已被证明是低延迟和低频带特征特征跟踪的理想选择,即使在具有挑战性的情况下也是如此。现有的事件摄像机的功能跟踪方法是手工制作的或源自第一原理,但需要广泛的参数调整,对噪声敏感,并且由于未建模的效果而不会概括到不同方案。为了解决这些缺陷,我们介绍了第一个针对事件摄像机的数据驱动的功能跟踪器,该功能摄像机利用低延迟事件来跟踪在强度框架中检测到的功能。我们通过新型的框架注意模块实现了强大的性能,该模块在特征轨道上共享信息。我们的跟踪器旨在以两种不同的配置进行操作:仅与事件或结合事件和帧的混合模式。混合模型提供了两个设置:一个对齐配置,其中事件和框架相机共享相同的视点,以及一个混合立体声配置,其中事件摄像头和标准摄像头并排放置。这种并排布置特别有价值,因为它为每个功能轨道提供了深度信息,从而增强了其在视觉探光和同时定位和映射等应用程序中的效用。
时间的操作方法是相对论理论的基石,正如适当的时间概念所证明的那样。在标准量子力学中,时间是外部阶段。最近,已经尝试了许多尝试在关系框架内延长适当时间的量子力学概念。在这里,我们使用类似的想法与相对论的质量能量等效性一起研究具有内部时钟系统的加速量量子粒子。我们表明,从粒子的内部时钟的角度来看,随之而来的演变是非热的。此结果不依赖于时钟的特定影响。是一个特别的结果,我们证明了两个重力相互作用粒子的有效哈密顿素体从任何一个粒子的时钟的角度都是非热的。