B861 雷达系统和综合体理论基础:教科书。/ M. I. Botov、V. A. Vyakhirev;一般情况下编辑。M.I.博托瓦。– 克拉斯诺亚尔斯克:同胞。联合。大学,2013 年。– 530 秒。 ISBN 978-5-7638-2933-4 该教科书简要概述了雷达作为特定工程活动领域和特殊科学学科“无线电工程”的发展历史。给出了雷达系统和综合体的理论和方法基础、构造原理和一般结构;雷达设备的结构、观察空间和测量目标坐标的方法、提高雷达站免受有源和无源干扰的安全性的方法。给出了典型制导和目标指示雷达站、待机模式和低空场的框图。概述了外部相关干扰背景下雷达信号多通道检测和参数测量的统计理论基础,综合分析了抗噪声高精度角度和时间测量算法和装置。考虑雷达信号的频率参数。本书适用于军事部门学生和空军军事训练中心学员学习军事注册专业“空军防空雷达系统操作与维修”,也可供参考专业培训领域的大学生 210601.65 扩大组的“无线电电子系统和综合体” 210000“电子工程、无线电工程和通信”以及对雷达系统和综合体的理论和方法感兴趣的每个人。UDC 621.396.967(07) BBK 39.571.55я73 ISBN 978-5-7638-2933-4 © 西伯利亚联邦大学,2013
激光雷达(光检测和测距)技术有可能彻底改变自动化系统与其环境和用户的交互方式。当今行业中的大多数激光雷达系统都依赖于脉冲(或“飞行时间”)激光雷达,而这种激光雷达在深度分辨率方面已达到极限。相干激光雷达方案,例如调频连续波 (FMCW) 激光雷达,在实现高深度分辨率方面具有显著优势,但通常过于复杂、昂贵和/或体积太大,无法在消费行业中实施。FMCW 及其近亲扫频源光学相干断层扫描 (SS-OCT) 通常针对计量应用或医疗诊断,这些系统的成本很容易超过 30,000 美元。在本论文中,我介绍了我在芯片级光学和电子元件集成方面的工作,以应用于相干激光雷达技术。首先,我将总结将通常体积庞大的 FMCW 激光雷达控制系统集成到光电芯片堆栈上的工作。芯片堆栈由一个 SOI 硅光子芯片和一个标准 CMOS 芯片组成。该芯片用于成像系统,可在 30 厘米的距离内生成深度精度低至 10 微米的 3D 图像。其次,我将总结我在实施和分析一种新的 FMCW 激光雷达信号后处理方法方面的工作,称为“多同步重采样”(MK 重采样)。这涉及非线性信号处理方案下激光相位噪声的蒙特卡罗研究,因此我将展示随机模拟和实验结果,以证明新重采样方法的优势。QS 重采样有可能提高相干成像系统的采集率、精度、信噪比和动态深度范围。
1985 年,Russell Rzemien、Jay F. Roulette 和 Paul R. Bade 设计了最初的 MK 92 MOD 6 CDC。CDC 记录雷达回波的同相和正交分量,以及其他相关雷达信息。雷达制造商制造了定制雷达接口板,从 FCS 中提取所需的雷达信号。CDC 能够与 CAS 搜索、CAS 跟踪或 STIR 进行交互。CDC 一次只能从其中一个雷达收集数据。最初,数据存储在缓冲区中,然后传输到九轨磁带中。几年后,原来的磁带驱动器被更快、更密集的 8 毫米磁带驱动器取代,从而可以记录更多数据。由于数据传输到磁带的速度不能和从雷达接收数据的速度一样快,因此只能记录一部分数据。收集搜索数据时,记录的数据仅限于操作员指定的范围和方位有限的扇区内。最初,扇区大小不能大于 10° x 15 英里,具体取决于雷达波形。收集轨迹数据时,CDC 会在指定的时间段内连续收集数据,然后将数据下载到磁带并重复该循环。当 CDC 将数据下载到磁带时,不会记录雷达在此期间发送的轨迹数据。多年来,CDC 被用于许多数据收集练习和测试活动。尽管 CAS 搜索收集扇区相对较小,并且收集轨迹数据的时间相对较短,但事实证明这些数据非常有用。困扰 MOD 6 系统的问题之一是,如果没有大型 CAS 搜索收集扇区,则很难进行分析。为了充分描述问题并评估所提出的方法,扇区大小至少为全范围 25°。更大的收集扇区需要设计和建造新的 MOD 6 CDC。Russell Rzemien、Ronald J. Clevering、Brian A. Williamson 和 Daryl I. Tewell 于 1994 年设计并建造了新的 MOD 6 CDC。雷达和 CDC 之间的接口保持不变。新 CDC 利用了
1985 年,Russell Rzemien、Jay F. Roulette 和 Paul R. Bade 设计了最初的 MK 92 MOD 6 CDC。CDC 记录雷达回波的同相和正交分量,以及其他相关雷达信息。雷达制造商制造了定制雷达接口板,从 FCS 中提取所需的雷达信号。CDC 能够与 CAS 搜索、CAS 跟踪或 STIR 进行交互。CDC 一次只能从其中一个雷达收集数据。最初,数据存储在缓冲区中,然后传输到九轨磁带中。几年后,原来的磁带驱动器被更快、更密集的 8 毫米磁带驱动器取代,从而可以记录更多数据。由于数据传输到磁带的速度不能和从雷达接收数据的速度一样快,因此只能记录一部分数据。收集搜索数据时,记录的数据仅限于操作员指定的扇区内,该扇区的范围和方位有限。最初,扇区大小不能比 10° x 15 英里大很多,具体取决于雷达波形。收集轨迹数据时,CDC 会在指定的时间段内连续收集数据,然后将数据下载到磁带并重复该循环。当 CDC 将数据下载到磁带时,不会记录雷达在此期间发送的轨迹数据。多年来,CDC 被用于许多数据收集练习和测试活动。尽管 CAS 搜索收集的扇区大小相对较小,并且收集轨迹数据的时间相对较短,但事实证明这些数据非常有用。困扰 MOD 6 系统的问题之一是,如果没有大型 CAS 搜索收集扇区,就很难进行分析。为了充分描述问题并评估所提出的方法,扇区大小至少为全范围的 25°。更大的收集扇区需要设计和建造一个新的 MOD 6 CDC。Russell Rzemien、Ronald J. Clevering、Brian A. Williamson 和 Daryl I. Tewell 于 1994 年设计并建造了新的 MOD 6 CDC。雷达和 CDC 之间的接口保持不变。新的 CDC 利用了
1985 年,Russell Rzemien、Jay F. Roulette 和 Paul R. Bade 设计了最初的 MK 92 MOD 6 CDC。CDC 记录雷达回波的同相和正交分量,以及其他相关雷达信息。雷达制造商构建了定制的雷达接口板,从 FCS 中提取所需的雷达信号。CDC 能够与 CAS 搜索、CAS 跟踪或 STIR 接口。CDC 一次只能从其中一个雷达收集数据。最初,数据存储在缓冲区中,然后传输到九轨磁带上。几年后,原来的磁带驱动器被更快、更密集的 8 毫米磁带驱动器取代,从而可以记录更多的数据。由于数据传输到磁带的速度不能像从雷达接收数据那样快,因此只能记录一部分数据。在收集搜索数据时,仅记录操作员指定的范围和方位有限的扇区内的数据。最初,扇区大小不能比 10 ° x 15 mi 大太多,具体取决于雷达波形。在收集轨迹数据时,CDC 会在指定的时间内连续收集数据,然后将数据下载到磁带并重复该循环。当 CDC 将数据下载到磁带时,不会记录雷达在此期间发送的轨迹数据。多年来,CDC 用于许多数据收集练习和测试活动。虽然用于 CAS 搜索收集的扇区大小相对较小,并且可收集轨迹数据的时间相对较短,但事实证明这些数据非常有用。困扰 MOD 6 系统的问题之一是,如果没有大型 CAS 搜索收集扇区,则很难进行分析。为了充分描述问题并评估所提出的方法,需要一个至少为 25 ° x 全范围的扇区大小。更大的收集扇区需要设计和构建新的 MOD 6 CDC。 Russell Rzemien、Ronald J. Clevering、Brian A. Williamson 和 Daryl I. Tewell 于 1994 年设计并建造了新的 MOD 6 CDC。雷达和 CDC 之间的接口保持不变。新的 CDC 利用
“ALS” 也为未来的设计带来了新的和扩展的功能。例如,有源频率选择表面材料 (AFSS) 由一层非常薄的半导体组成,该半导体层足够灵活,可以应用于飞机外壳。AFSS 将记录和识别传入的雷达信号,并发送定制的回复,使原始信号无效。其他形式的主动涂层甚至可以抑制或“隐藏”红外和光学特征。目前,亚音速飞翼被认为是隐形飞机的最佳形式。这种设计能够实现的功能显然非常适合远程战略轰炸机的角色。美国空军似乎对 B-2 SPIRIT 非常满意,以至于选择了类似的设计,即 B-21 RAIDER,作为其继任者。战斗机或战斗轰炸机则不然。因此,F-22 和 F-35 与其前身 F-15 和 F-16 的相似性要高于 B-2 与 B-52 的相似性。尽管第五代战斗机和战斗轰炸机的设计似乎为了更好的灵活性而牺牲了隐身性,但 F-22 和 F-35 都因无法在视距空对空作战中击败第四代对手而受到批评。不管这种说法有多合理,它仍然表明高气动性能和极低的可观测性是相互竞争的设计原则。当避免早期雷达探测比高敏捷性更重要时,隐形战斗机处于最佳状态,即在超视距空对空作战或穿透复杂的综合防空系统时。战斗机和战斗轰炸机所需的高敏捷性也意味着它们的整体尺寸必须相对较小。非隐形设计通过将大部分燃料和武器作为外部存储来弥补这一点。但是,外部存储和隐形是不相容的。为了实现隐身,飞机必须在内部携带燃料和武器,这会减少它们的航程,并减少一次出击可以击中的目标数量。这只能通过改变空中作战的总体性质和组成来改善。使用“武库飞机”增加可用武器的数量,使用加油机扩大射程和续航能力,将提供一些解决方案,但如果这些飞机的隐身性不如它们所支持的飞机,也会带来新的挑战。目前的想法似乎集中在使用隐形飞机作为一种“先锋”,突破对手的防御,并利用其传感器和网络能力来发现、识别和
1985 年,Russell Rzemien、Jay F. Roulette 和 Paul R. Bade 设计了最初的 MK 92 MOD 6 CDC。CDC 记录雷达回波的同相和正交分量,以及其他相关雷达信息。雷达制造商构建了定制的雷达接口板,从 FCS 中提取所需的雷达信号。CDC 能够与 CAS 搜索、CAS 跟踪或 STIR 接口。CDC 一次只能从其中一个雷达收集数据。最初,数据存储在缓冲区中,然后传输到九轨磁带上。几年后,原来的磁带驱动器被更快、更密集的 8 毫米磁带驱动器取代,从而可以记录更多的数据。由于数据传输到磁带的速度不能像从雷达接收数据那样快,因此只能记录一部分数据。在收集搜索数据时,仅记录操作员指定的范围和方位有限的扇区内的数据。最初,扇区大小不能比 10 ° x 15 mi 大太多,具体取决于雷达波形。在收集轨迹数据时,CDC 会在指定的时间内连续收集数据,然后将数据下载到磁带并重复该循环。当 CDC 将数据下载到磁带时,不会记录雷达在此期间发送的轨迹数据。多年来,CDC 用于许多数据收集练习和测试活动。虽然用于 CAS 搜索收集的扇区大小相对较小,并且可收集轨迹数据的时间相对较短,但事实证明这些数据非常有用。困扰 MOD 6 系统的问题之一是,如果没有大型 CAS 搜索收集扇区,则很难进行分析。为了充分描述问题并评估所提出的方法,需要一个至少为 25 ° x 全范围的扇区大小。更大的收集扇区需要设计和构建新的 MOD 6 CDC。 Russell Rzemien、Ronald J. Clevering、Brian A. Williamson 和 Daryl I. Tewell 于 1994 年设计并建造了新的 MOD 6 CDC。雷达和 CDC 之间的接口保持不变。新的 CDC 利用
1985 年,Russell Rzemien、Jay F. Roulette 和 Paul R. Bade 设计了最初的 MK 92 MOD 6 CDC。CDC 记录雷达回波的同相和正交分量,以及其他相关雷达信息。雷达制造商构建了定制的雷达接口板,从 FCS 中提取所需的雷达信号。CDC 能够与 CAS 搜索、CAS 跟踪或 STIR 接口。CDC 一次只能从其中一个雷达收集数据。最初,数据存储在缓冲区中,然后传输到九轨磁带上。几年后,原来的磁带驱动器被更快、更密集的 8 毫米磁带驱动器取代,从而可以记录更多的数据。由于数据传输到磁带的速度不能像从雷达接收数据那样快,因此只能记录一部分数据。在收集搜索数据时,仅记录操作员指定的范围和方位有限的扇区内的数据。最初,扇区大小不能比 10 ° x 15 mi 大太多,具体取决于雷达波形。在收集轨迹数据时,CDC 会在指定的时间内连续收集数据,然后将数据下载到磁带并重复该循环。当 CDC 将数据下载到磁带时,不会记录雷达在此期间发送的轨迹数据。多年来,CDC 用于许多数据收集练习和测试活动。虽然用于 CAS 搜索收集的扇区大小相对较小,并且可收集轨迹数据的时间相对较短,但事实证明这些数据非常有用。困扰 MOD 6 系统的问题之一是,如果没有大型 CAS 搜索收集扇区,则很难进行分析。为了充分描述问题并评估所提出的方法,需要一个至少为 25 ° x 全范围的扇区大小。更大的收集扇区需要设计和构建新的 MOD 6 CDC。 Russell Rzemien、Ronald J. Clevering、Brian A. Williamson 和 Daryl I. Tewell 于 1994 年设计并建造了新的 MOD 6 CDC。雷达和 CDC 之间的接口保持不变。新的 CDC 利用
全后掠位置用于超音速飞行和高亚音速低空突防。轰炸机的进攻性航空电子设备包括合成孔径雷达 (SAR)、地面动目标指示器 (GMTI)、地面动目标跟踪 (GMTT) 和地形跟踪雷达 (TFR)、极其精确的全球定位系统/惯性导航系统 (GPS/INS)、计算机驱动的航空电子设备和战略多普勒雷达,使机组人员能够导航、在飞行中更新目标坐标和精确轰炸。目前的防御性航空电子设备包以 ALQ-161 电子对抗 (ECM) 系统为基础,辅以 ALE-50 拖曳诱饵、箔条和照明弹,以防御雷达制导和热寻的导弹。飞机结构和雷达吸波材料将飞机的雷达信号降低到 B-52 的大约百分之一。 ALE-50 可以更好地防御射频威胁。B-1A。美国空军在 1970 年代获得了四架这种新型战略轰炸机的原型飞行测试模型,但该计划于 1977 年取消。四架 B-1A 型号的飞行测试一直持续到 1981 年。B-1B。于 1981 年开始,改进型 B-1 的第一架生产模型于 1984 年 10 月首飞。美国空军共生产了 100 架。B-1 于 1998 年 12 月在沙漠之狐行动中首次用于支援对伊拉克的作战。美国空军于 2002 年 8 月开始实施将其 B-1B 库存从 93 架减少到 60 架的计划,并在得克萨斯州戴斯空军基地和北达科他州埃尔斯沃斯空军基地整合机队,运营和维护方面节省的成本将用于资助剩余机队的升级和备件B-1B 的速度、卓越的操控性和巨大的有效载荷使其成为任何联合/合成打击部队的关键要素,它可以灵活地投放多种武器或根据需要携带额外的燃料。2,000 磅 GPS 制导的 GBU-31 JDAM 的集成已于 2002 财年完成。正在进行的常规任务升级计划 (CMUP) 通过集成精确制导和防区外武器以及强大的 ECM 套件,大大提高了 B-1B 的杀伤力和生存力。CMUP 包括 GPS 接收器、MIL-STD-1760 武器接口、安全互操作无线电和改进的计算机以支持精确制导武器(最初是 GBU-31 JDAM),后续的计算机和软件升级允许同时携带混合制导和非制导武器。
具有增强的生存能力。无后掠翼设置可在高空巡航期间提供最大航程。全后掠位置用于超音速飞行和高亚音速低空突防。轰炸机的进攻性航空电子设备包括合成孔径雷达 (SAR)、地面动目标指示器 (GMTI)、地面动目标跟踪 (GMTT) 和地形跟踪雷达 (TFR)、极其精确的全球定位系统/惯性导航系统 (GPS/INS)、计算机驱动的航空电子设备和战略多普勒雷达,使机组人员能够导航、更新飞行中的目标坐标和精确轰炸。目前的防御性航空电子设备包以 ALQ-161 电子对抗 (ECM) 系统为基础,由 ALE-50 拖曳诱饵和箔条和照明弹补充,以防御雷达制导和热寻的导弹。飞机结构和雷达吸收材料将飞机的雷达信号降低到 B-52 的约 1%。ALE-50 可提供更强的射频威胁防护。B-1A。美国空军在 20 世纪 70 年代获得了这种新型战略轰炸机的四架原型飞行测试模型,但该计划于 1977 年取消。四架 B-1A 型号的飞行测试一直持续到 1981 年。B-1B。改进型 B-1 于 1981 年启动,第一架生产型于 1984 年 10 月首飞。美国空军共生产了 100 架。现役 B-1B 库存最近从 92 架减至 67 架,同时合并到空战司令部位于得克萨斯州戴斯空军基地和北达科他州埃尔斯沃思空军基地的两个主要作战基地。B-1B 于 1998 年 12 月在沙漠之狐行动中首次用于对伊拉克的作战,此后一直支持在阿富汗的持久自由行动和伊拉克自由行动。B-1B 的速度、卓越的操控性和巨大的有效载荷使其成为任何联合/合成打击部队的关键要素,能够灵活地投送各种武器或根据需要携带额外的燃料。正在进行的常规任务升级计划 (CMUP) 显著提高了 B-1B 的杀伤力和生存力。已完成的 Block D 升级包括 GPS 接收器、MIL-STD-1760 武器接口、安全互操作无线电和改进的计算机,以支持精确武器,最初是 GBU-31 JDAM。现已投入生产的 Block E 包括后续计算机和软件升级,允许同时携带混合制导和非制导武器以及 WCMD/JSOW/JASSM 集成。集成