概述................................................................................................................................5-5 应力分析...................................................................................................................5-5 应力分析概述..............................................................................................................5-5 应力或载荷................................................................................................................5-6 力和力矩................................................................................................................5-6 一般方程式................................................................................................................5-6 空气载荷表面.............................................................................................................5-6 截面属性................................................................................................................5-6 空气载荷................................................................................................................5-7 静态测试代替应力分析.............................................................................................5-7 带应力分析的量具组件.............................................................................................5-7 降低要求................................................................................................................5-7 先前测试过的组件.....................................................................................................5-7 材料选择.....................................................................................................................5-8 材料标准.....................................................................................................................5-8 机械性能校正.....................................................................................................5-8 允许强度.....................................................................................................................5-8 安全系数.....................................................................................................................5-8 剪切应力.................................................................................................................5-8 热应力.................................................................................................................5-8 材料特性...............................................................................................................5-8 屈曲应力...............................................................................................................5-8 振荡应力...............................................................................................................5-9 冲击强度...............................................................................................................5-9 结构接头.................................................................................................................5-9 紧固件质量标准...........................................................................................................5-9 紧固件装配................................................................................................5-9 结构接头图...................................................................................................5-9 接头的军用规格标准....................................................................................5-10 焊接接头...................................................................................................5-10 剪切载荷(螺栓接头).........................................................................................5-10 螺栓预紧力....................................................................................................5-10 螺纹啮合....................................................................................................5-10 埋头孔、沉头孔和锪面....................................................................................5-10 小螺钉.............................................................................................................5-11 螺钉接头.....................................................................................................5-11
摘要钢纤维增强 - 凝结(SFRC)的压缩行为取决于加载速率。这项研究在实验和分析上调查了加载速率对旨在用于预制城市保护家具的SFRC压缩行为的影响。为此,在四个下降高度和四个不同应变速率的准静态测试下,对圆柱体SFRC样品进行了修改的仪器 - 滴射 - 重量测试。分析获得惯性力,并通过实验测量。结果表明,通过增加应变速率,弹性模量,抗压强度和能量耗散能力增加。提出了三种不同的模型,以预测每个机械特性,一个在准静态范围内,而其他模型则与霍普金森分裂压力棒和降低重量影响测试相对应。讨论了SFRC特性获得的实验动力学与静态比率,并将其与本研究和其他研究人员提出的那些进行了比较。三个提出的模型显着改善了预测,在抗压强度,弹性和韧性的模量方面,动态增加因子值。
推进系统的特性可在档案文献中找到。鉴于此,本研究的目的是确定由电动机驱动的直径在 4.0 至 6.0 英寸范围内的各种小型螺旋桨的性能。设计和建造了一个实验测试台,其中螺旋桨/电动机安装在风洞中,以进行静态和动态测试。将本实验的静态和动态结果与以前的研究结果进行了比较。对于静态测试,推力系数、螺旋桨功率系数和总效率(定义为螺旋桨输出功率与电输入功率之比)与螺旋桨转速的关系图。对于动态测试,螺旋桨的转速在规则间隔内保持不变,同时自由流空速从零增加到风车状态。推力系数、功率系数、螺旋桨效率和总效率与各种转速的前进比的关系图。发现推力和扭矩随着转速、螺旋桨螺距和直径的增加而增加,随着空速的增加而减小。使用现有数据以及来自档案和非档案来源的数据,发现方形螺旋桨的推力系数随螺旋桨直径的增加而增加,其中 D = P 。螺旋桨系列的推力系数(sam
自然语言处理 (NLP) 系统通常用于对抗性任务,例如检测垃圾邮件、辱骂、仇恨言论和虚假新闻。正确评估此类系统需要动态评估来搜索模型中的弱点,而不是静态测试集。先前的工作已经在手动和自动生成的示例上评估了此类模型,但这两种方法都有局限性:手动构建的示例创建起来很耗时,并且受到创建者的想象力和直觉的限制,而自动构建的示例通常不合语法或标签不一致。我们建议将人类和人工智能的专业知识结合起来生成对抗性示例,受益于人类在语言方面的专业知识和自动攻击更快、更彻底地探测目标系统的能力。我们提出了一个促进攻击构建的系统,将人类判断与自动攻击相结合,以更有效地创建更好的攻击。我们自己实验的初步结果表明,人机混合攻击比纯人类或纯人工智能攻击更有效。验证这些假设的完整用户研究仍有待完成。
这项工作是在都柏林大学学院近六个月的研究成果。它包括对内部有钢纤维和无钢纤维的 CFRP 进行的疲劳测试。提出了在 CFRP 内部插入不同纤维材料层的想法,以提高断裂韧性,尤其是分层行为,这是导致失效的机制之一。这些材料样品在之前的研究项目中进行了静态测试,UCD 的团队也有兴趣在疲劳征求下测试它们,以比较结果和行为。研究 CFRP 是因为它可以应用于航空航天和汽车领域,因此人们对发现它在周期性力下的表现非常感兴趣。第一次疲劳测试后,再次对样品进行疲劳测试,以查看它们如何响应第二个周期性载荷。重复疲劳试验是当今备受关注的研究,因为它可以更好地表征材料,并可以模拟材料寿命期间发生的真实现象。为了进行实验,需要制定标准和规则来规范程序并获得正确的结果。从数据分析可以看出,就像在静态试验中发生的那样,纤维可以改善材料的行为并提高断裂韧性。作为未来的工作,建议继续研究这些材料的疲劳,特别是重复疲劳试验,因为有必要找到新的标准,以便更好地描述和理解样品对请求的反应。
• AH-64 Apache 数字孪生,美国陆军航空兵 • B-1B Lancer 数字孪生,空军 • B-1B 工程和修改支持,美国空军 • F-16 数字孪生,美国空军 • F-35 拆卸,空军、海军、海军陆战队 • FirePoint 联合研发项目:技术开发和转型,美国陆军 AMRDEC • KC-135 结构拆卸数据管理可视化,空军 • M113 数字孪生,陆军 AMC • MQ-9 Reaper 机身耐久性和损伤容限测试,空军 • MQ-9 Reaper 机身静态测试,空军 • MQ-4 Triton 机身耐久性和损伤容限测试,海军 • Skyborg 原型设计、实验和自主开发,空军 • UH-60L Black Hawk 数字孪生,陆军 AMC • 经济实惠、可持续复合材料建模 (MASC) 研究计划,空军研究实验室 • 多所大学 / 机构研究合作伙伴关系旨在开发技术,以增强先进材料特性和结构认证,并借助高保真损伤模型和用于证实先进复合结构的有效协议 - AFRL、ONR、NAVAIR、DURIP、SBIR/STTR • 国家国防原型中心 • 国防部高速导弹应用的新兴材料 • 美国空军 B-52 同温层堡垒、C-130 大力神、F-16 战隼、B-1 枪骑兵的数字工程和技术 • 美国陆军地面系统综合技术现代化 (MINT-GS)
摘要 本研究调查了安装在螺旋桨尾流中的基于叶片的推力矢量系统的效率,该系统在净推力损失最小的情况下支持前向力。矢量系统本身既可以放置在独立螺旋桨配置中,也可以放置在机翼内螺旋桨配置中。代顿大学低速风洞 (UD-LSWT) 使用现成的 R/C 螺旋桨进行静态和基于风力的实验。灵敏度分析确定了叶片偏转角对推力矢量的影响以及螺旋桨相对于集成机翼上表面的位置对系统性能的影响。静态测试结果表明,当矢量设计放置在机翼中时,叶片性能显着改善。实现了推力矢量控制,随后俯仰力矩发生变化,在两种螺旋桨俯仰情况下,叶片偏转角逐渐增加:75° 和 90°。标准 90° 俯仰方向的集成式机翼螺旋桨系统的风洞试验结果显示,在前进比低于 0.3 时,推力矢量控制成功,这对于大多数相关应用而言都是实用的;螺旋桨叶片系统的 75° 俯仰方向观察到推力矢量控制能力扩展到 0.7 的前进比。敏感性分析表明,暴露在流动自由流中的螺旋桨的整体效率高于完全嵌入模拟机翼的螺旋桨,尽管嵌入式情况具有更好的推力矢量控制能力。致谢 衷心感谢亨利·卢斯基金会通过克莱尔·布思·卢斯 (CBL) 研究计划提供的支持。另一位重要的捐助者蔡杰龙先生(Jacky)对本作品在整个过程中给予的持续指导深表感谢。
摘要 本研究调查了位于螺旋桨尾流中的基于叶片的推力矢量系统的效率,该系统可在净推力损失最小的情况下支持前向力。矢量系统本身既可放置在独立螺旋桨配置中,也可放置在机翼螺旋桨配置中。在代顿大学低速风洞 (UD-LSWT) 使用现成的 R/C 螺旋桨进行静态和基于风力的实验。敏感性分析确定了叶片偏转角对推力矢量的影响以及螺旋桨相对于集成机翼上表面的位置对系统性能的影响。静态测试结果表明,当矢量设计放置在机翼中时,叶片性能显著改善。在两种螺旋桨俯仰情况下:75° 和 90°,随着叶片偏转角的逐渐增加,实现了推力矢量,随之改变了俯仰力矩。标准 90° 螺距方向的一体式机翼螺旋桨系统风洞试验结果显示,在低于 0.3 的前进比下成功实现推力矢量控制,这对于大多数相关应用而言是实用的;螺旋桨叶片系统的 75° 螺距方向观察到推力矢量控制能力扩展到 0.7 的前进比。敏感性分析表明,暴露在流动自由流中的螺旋桨的整体效率高于完全嵌入模拟机翼的螺旋桨,尽管嵌入式壳体具有更好的推力矢量控制能力。致谢 诚挚感谢亨利·卢斯基金会通过克莱尔·布思·卢斯 (CBL) 研究项目提供的支持。另一位主要捐助者蔡杰龙先生(Jacky)对本工作期间的持续指导深表感谢。
背景/目的:使用传统方法检查镍钛旋转器械的静态扭矩与临床情况相矛盾,而且该方法对于顺时针和逆时针旋转运动的有效性值得怀疑。本研究旨在使用临床扭矩极限设置在静态/动态测试条件下检查不同运动学对 JIZAI 器械 (#25/.04) 扭转行为的影响。材料和方法:在静态测试中,将 JIZAI 的 5 毫米尖端固定在圆柱形虎钳中,并以自动扭矩反转、最佳扭矩反转 (OTR) 或往复 (REC) 进行连续旋转 (CR) 直至断裂(各 n Z 10)。在动态测试中,使用单长度技术使用 JIZAI 和 CR、OTR 或 REC 对直根管和严重弯曲根管进行器械治疗(各 n Z 10)。使用带有扭矩/力测量单元的自动塑形装置记录断裂时的静态扭矩、断裂时间 (T f )、动态扭矩和旋入力。使用单因素方差分析或带有 Bonferroni 校正的 Kruskal e Wallis 检验和 Mann e Whitney U 检验进行统计学分析 (⍺ Z 0.05)。结果:运动学不影响静态或动态扭矩 (P > 0.05);然而,确实影响直根管中的旋入力 (P < 0.05)。REC 具有明显较长的 T f ,而严重弯曲的根管在 CR 中产生明显更大的扭矩和旋入力 (P < 0.05)。结论:在目前的实验条件下,扭矩以外的参数对不同的运动学表现出明显的影响。 OTR 的动态扭矩和旋入力与其他旋转模式相似,不受管道弯曲度的影响。
5G 是蜂窝网络的第五代技术标准。它有三个主要应用需求,即增强移动宽带 (EMBB)、大规模机器类型通信 (MMTC) 和超可靠低延迟通信 (URLLC)。URLLC 是一项非常具有挑战性的需求,具有严格的可靠性和延迟要求。到 2022 年,它已得到高度规范,5G 供应商将在不久的将来开始实现基本的 URLLC 功能。本论文的动机是找到方法来测量 5G 独立 (SA) 网络在关键 URLLC 性能指标上的表现,分析和可视化这些测量结果,找出某些网络行为的原因,并估计不同的 URLLC 功能在实施时会产生什么样的影响。此外,另一个动机是找到一种方法来检测数据包丢失及其背后的原因,因为数据包丢失会严重损害可靠性,在部署 URLLC 功能之前应将其最小化。为了测量 5G SA 网络的性能,确定了四种不同类型的测试用例,其中生成了 URLLC 类型的网络流量。在 5G 小区的良好覆盖和不良覆盖下进行静态测试,在连接到同一 5G 小区时从良好覆盖移动到不良覆盖进行移动性测试,以及在切换测试中更改 5G 小区。所有测试均在 5G 现场验证环境中完成,包括下行链路和上行链路。对于下行链路,小区内的覆盖和移动性对单向延迟没有显著影响。这主要是因为不需要数据包重新传输,否则会增加延迟。这对于移动 URLLC 用例(例如车对万物通信 (V2X))尤其有前景。上行链路表现要弱得多,主要是因为上行链路资源调度和数据包重传。切换对于下行链路和上行链路都是有问题的,因为小区变化导致延迟短暂但大幅增加。测量中的所有数据包丢失都发生在上行链路传输中,本论文包括一个案例研究,其中导致数据包丢失的不同潜在因素被一致消除。最后,数据包丢失的原因指向用于测试的 5G 芯片组。