国际计算机应用和信息技术研究杂志(IJRCAIT)第8卷,第1期,Jan-Feb 2025,pp。2084-2096,文章ID:IJRCAIT_08_01_152在线可在https://iaeme.com/home/home/issue/issue/ijrcait?volume=8&issue=1 ISSN印刷:2348-0009和ISSN在线:2347-5099 Impact因素(2347-5099 Impact因素(2025)(基于Google of Google coogne congook): doi:https://doi.org/10.34218/ijrcait_08_01_152©iaeme Publication
三维(3D)印刷已迅速成为骨科手术中的变革力量,从而实现了高度定制和精确的医疗植入物和手术工具的创建。本综述旨在为新兴的3D打印技术提供更加系统和全面的观点 - 从基于挤出的方法和生物互联的印刷到粉末床融合,以及包括生物活性剂和含细胞的墨水阵列的扩展材料。我们强调了这些技术和材料如何用于制造患者特异性植入物,手术指南,假肢和先进的组织工程支架,显着增强的手术结果和患者康复。尽管取得了显着进展,但领域仍面临挑战,例如优化机械性能,确保结构完整性,解决不同地区之间的监管复杂性,并考虑环境影响和成本障碍,尤其是在低资源环境中。展望未来,智能材料和功能分级材料(FGM)的创新,以及生物打印方面的进步,对克服这些障碍并扩大了骨科中3D打印的能力有望。这篇评论强调了跨学科合作和正在进行的研究在利用增材制造的全部潜力方面的关键作用,最终为更有效,个性化和耐用的骨科解决方案铺平了道路,从而提高了患者的生活质量。
摘要 . 本文从更广泛、更哲学的角度讨论了今年诺贝尔物理学奖,该奖项旨在表彰纠缠实验“打破贝尔不等式,开创量子信息科学”。该奖项以诺贝尔奖的权威性为“经典”量子力学之外的一个新科学领域赋予了合法性,该领域与泡利的“粒子”能量守恒范式有关,因而也与遵循该范式的标准模型有关。人们认为,最终的未来量子引力理论属于新建立的量子信息科学。纠缠因其严格描述、非幺正性以及非局域和超光速物理信号“幽灵般地”(用爱因斯坦的华丽词藻)同步和传输超距非零作用而涉及非厄米算子,可以被认为是量子引力,而根据广义相对论,它的局域对应物就是爱因斯坦引力,从而开辟了一条不同于标准模型“二次量化”的量子引力替代途径。因此,纠缠实验一旦获得诺贝尔奖,将特别推出以“量子信息科学”为基础的量子引力相关理论,因此被认为是广义量子力学共享框架中的非经典量子力学,它遵循量子信息守恒而不仅仅是能量守恒。宇宙“暗相”的概念自然与已得到充分证实的“暗物质”和“暗能量”相联系,而与经典量子力学和标准模型所固有的“光相”相对立,后者遵循量子信息守恒定律,可逆因果关系或能量与信息的相互转化是有效的。神秘的大爆炸(能量守恒定律普遍成立)将被一种无所不在、无时不在的退相干介质所取代,这种介质将暗相和非局域相转化为光相和局域相。前者只是后者的一个整体形象,事实上它更多地是从宗教而不是科学中借用的。今年的诺贝尔物理学奖预示着一种范式转变,随之而来的是物理、方法论和适当的哲学结论。例如,科学的思维理论也应该起源于宇宙的暗相:可能只是由物理上完全属于光相的神经网络近似地建模。打破泡利范式带来了几个关键的哲学序列:(1)建立了宇宙的“暗”相,与“明”相相对,只有对“暗”相,笛卡尔的“身体”和“精神”二分法才有效;(2)量子信息守恒与暗相相关,进一步将能量守恒推广到明相,有效地允许物理实体“从虚无中”出现,即,来自暗阶段,其中能量和时间彼此不可分割;(3)可逆因果关系是暗阶段所固有的;(4)引力仅从数学上解释:作为有限性对无限性的不完整性的一种解释,例如,遵循关于算术与集合论关系的哥德尔二分法(“要么矛盾,要么不完整性”);(5)层次结构概念仅限于光阶段;(6)在暗阶段,量子的两个物理极端与整个宇宙的可比性遵循量子信息守恒,类似于库萨的尼古拉斯的哲学和神学世界观。关键词:经典量子力学、宇宙的暗相和明相、暗能量和暗物质、爱因斯坦、能量守恒、纠缠、广义相对论、量子力学中的厄米量和非厄米量、局域性和非局域性、泡利粒子范式、量子引力、量子信息、量子信息守恒、量子比特、标准模型、幺正性和非幺正性
随着AI的发展,从“快速思考”(提供快速的响应)到“思考缓慢”(理性和故意解决问题)时,影响变得更加深远。在回合中,链接的系统可以分析生物识别数据并提醒临床医生对异常情况,从而使单个提供商能够有效地监控和响应更精确的患者的需求。此演变的特征是AI驱动的平台和代理超越EHR等孤立的系统,以在多种工具上策划临床和操作过程。通过将智能代理嵌入医疗保健工作流程中,临床医生获得了将诸如异常检测,护理计划的产生和放电后随访等任务委托的能力,将AI-EAIG的临床医生转变为部队乘数。这些代理系统不仅优化了患者的相互作用,而且还扩大了临床医生的影响,远远超出了医院的墙壁,最终创建了一个连续的反馈回路,可以改善结果并降低效率低下。
化学工程和生物技术的整合正在通过在各种应用中有效使用酶来改变行业。酶作为自然生物催化剂,在许多生物过程中一直是数十亿年的关键。然而,生物技术和化学工程的现代进步已促进了在工业环境中对这些蛋白质进行更系统和大规模利用的促进。通过工程酶,研究人员正在开发新颖的解决方案,以更高的精确,效率和可持续性加速化学反应,从而使从药品到食品生产和环境保护的众多部门受益。为了修改工业应用酶,研究人员使用了基因工程,蛋白质工程和计算建模的组合。
为合作伙伴的军事、执法和情报部队和机构提供建议、协助、陪同和装备。■非常规战争:为试图抵抗敌对行为者的非国家合作伙伴提供训练、建议、协助、陪同和装备。非常规战争可能涉及美国或合作伙伴部队与游击队、抵抗组织、民兵或其他非国家组织合作、与其合作或通过其开展工作。■信息行动:告知和影响外国受众或反击对手的信息、错误信息和虚假信息行动。信息和影响行动可以是公开的,也可以是秘密的。对于美国军事力量(包括特种作战部队)而言,这些类型的任务通常属于军事信息支援行动(MISO)的范畴。■直接行动:利用专门能力进行打击或其他进攻行动,夺取、破坏、摧毁、俘获或收复指定目标。这些行为还包括破坏或扰乱——或者威胁破坏或扰乱——对手的基础设施,或者通过内部秘密行动削弱外国实体。
组织团队教授(博士)Monika Arora,ABS(召集人)Rishi Manrai博士,协会。教授,ABS(召集人)Faraz Ahmad博士,助理。ABS(共同征收)教授Sanchita Ghosh博士,助理。 教授,ABS(共同召集人)博士 a.m. Jose,教授,ABS博士Paras Chawla博士,ASET教授兼主任Sunil Sikka博士,ASET教授,ASET博士Monica Kapuria博士,副教授,ABS Komal Tomar博士,市场营销总经理,营销ABS(共同征收)教授Sanchita Ghosh博士,助理。教授,ABS(共同召集人)a.m. Jose,教授,ABS博士Paras Chawla博士,ASET教授兼主任Sunil Sikka博士,ASET教授,ASET博士Monica Kapuria博士,副教授,ABS Komal Tomar博士,市场营销总经理,营销
纳米技术的快速发展彻底改变了药物输送系统,大大提高了药物的功效,同时减少了不良副作用。为了实现最佳生物利用度、延长释放时间和准确靶向,传统的药物输送技术有时会遇到困难。相反,纳米粒子的尺寸范围从 1 到 1000 纳米,对药物的药代动力学、生物分布和细胞吸收提供了无与伦比的控制。本文研究了纳米粒子药剂学,并强调了它们如何改变药物输送和靶向。本文讨论了各种类型的纳米粒子,包括脂质体、聚合物纳米粒子、树枝状聚合物、固体脂质纳米粒子和量子点,以了解它们在药物输送中的独特特性和应用。本文对药物释放的机制进行了严格分析,例如被动和主动靶向、刺激响应系统和细胞摄取途径,以展示如何设计纳米粒子以实现靶向治疗效果。此外,本文还讨论了纳米粒子的药代动力学特征和生物分布模式,强调了它们在增强治疗效果的同时降低全身毒性的潜力。即使具有令人鼓舞的潜力,仍有许多障碍需要克服,例如稳定性、大规模生产、监管部门批准和安全问题。然而,纳米粒子已用于许多治疗领域,从基因转移和癌症治疗到疫苗的研制和传染病的管理。本综述旨在全面了解纳米粒子药物输送系统的当前状况,强调它们对制药行业的变革性影响。本文最后概述了纳米粒子研究的未来方向,并期待进一步的突破能够重塑现代医学的格局。