多细胞生物中的Messenger RNA(mRNA)可以充当运输细胞到细胞的信号,并长期距离。在植物中,mRNA通过浆液(PDS)(PDS)和长距离通过韧皮部血管系统进行长距离,以控制各种生物学过程,例如细胞命运和组织器官 - 目的地器官中。关于植物中mRNA的长距离运输的研究取得了显着的进步,包括对许多流动mRNA的分类,对传输重要的mRNA特征的表征,对涉及运输的mRNA结合蛋白的鉴定以及对mRNA运输的生理作用的理解。但是,有关短距离mRNA细胞向细胞转运的信息仍然有限。本综述讨论了在细胞和整个植物水平上mRNA转运的调节机制和生理功能。
它发生在登山者中,例如非洲人,gnetum ula等。在这里,正常的二级生长像往常一样在直立物种中进行。后来,许多cambia在皮质中越来越多地区分了一个。每个在外部形成韧皮部,内部形成木质部。如此形成的VBS是楔形的。这个VBS的环称为同轴环。同轴环被合并到正常生长环中。通常在第一个环完成后产生第二个轴向环。有时,当Co轴向环不完整时,木材称为偏心。季节性变化与同轴环的发展之间似乎没有相关性。因此,不应将其与正常生长环或年环混淆。属菌来自皮层的表皮或外层。它在外部形成软木/佩里德尔和次生皮层。
植物切开术在植物生物技术和基因工程中起关键作用,通过提供对植物组织的结构组织和功能专业化的见解。了解植物解剖学使研究人员能够操纵植物系统,以提高生产力,耐药性和适应能力。本手稿解释了植物切开术是如何成为植物生物技术和遗传工程发展的基础,重点是组织特异性的遗传修饰,结构适应和植物育种的创新。植物切开术揭示了植物系统的内部组织,包括根,茎,叶和生殖器官。每个组织皮肤,血管和地面都具有特定功能,这些功能是植物的生存和生长不可或缺的功能。例如,血管系统(木质部和韧皮部)是营养和水运输的核心,而表皮则充当保护屏障。通过研究这些结构,科学家可以识别靶组织的遗传修饰,以增强营养摄取,光合作用效率或病原体耐药性。了解植物解剖学是基因工程的关键。组织特异性启动子在特定的器官或细胞类型中启用靶向基因表达。例如,表皮中的遗传修饰可以通过改变角质层厚度或气孔密度来增强干旱耐受性。同样,操纵韧皮部细胞可以改善光合作用的易位,从而提高作物产量。转基因方法通常依赖于解剖学知识来确保外国基因的成功整合和表达。农杆菌介导的转化是一种基因工程中广泛使用的方法,需要精确靶向细胞主动分裂的分生组织组织。植物学研究为识别这些组织提供了路线图,从而促进了有效的遗传修饰。植物组织培养是植物生物技术的基石,深深地植根于植物切开术。从小组织样品中再生整个植物的能力取决于对细胞和组织结构的理解。例如,愈伤组织需要了解实质细胞的能力,而芽和根的分化
转录组和基因组数据的快速发展以及我们对粉虱与植物相互作用的生理和生物化学的理解使我们能够对粉虱的生物学及其对宿主植物的成功适应获得新的和重要的见解。在这篇综述中,我们全面概述了粉虱为克服以韧皮部汁液为食的挑战而进化的机制。我们还重点介绍了参与宿主感知、评估和操纵;初级代谢;代谢物解毒的基因家族的进化和功能。我们讨论了植物对粉虱免疫的新兴主题,重点关注粉虱效应物及其在植物防御信号通路中的作用位点。最后,我们讨论了粉虱基因操作的进展及其在探索粉虱与宿主植物相互作用以及开发粉虱基因控制新策略方面的潜力。
分子农民Maya Sapir-Mir(左)和Raya Liberman-Aloni正在接受全球烹饪的最爱,并将其转变为低成本生物反应器以生产卵子蛋白。他们在2022年建立了Polopo,以设计土豆植物以生产蛋清蛋白质,而无需昂贵的生物反应器。该公司位于以色列的内斯Ziona,已开始首次实地试验,种植了富含蛋白质的块茎。Ovalbumin是蛋清中的主要蛋白质,是食品制造商作为成分所追捧的,因为它有助于提高营养价值并延长包装产品的保质期。团队通过将整个卵蛋白DNA序列插入叶片,从而设计了马铃薯,因此,该序列包含了产生功能齐全的蛋白质的指令,该蛋白质在营养和化学上与鸡蛋中的蛋白质相同。将养分从叶子移到块茎的韧皮部运输了工程化的椭圆蛋白产品。遗传改性的polopo马铃薯看起来与原始的polopo相同,具有其优势,并将蛋白质储存在块茎中,实际上像迷你抗反应器一样有效地发挥作用。这些植物的生长快且廉价地培养,并且由于它们在遗传上与第一个
已发现韧皮部中存在许多可系统移动的 mRNA。然而,其中很少有具有明确的信号功能的。其中一个罕见的例子就是可移动的开花基因座 T ( FT ) mRNA,尽管关于其移动性及其与植物开花时间控制的生物学相关性一直存在争议。尽管如此,越来越多的证据支持 FT mRNA 从叶子到茎尖分生组织的长距离移动及其在开花中的作用的观点。在这篇综述中,我们讨论了开花基因 FT 的发现、关于 FT mRNA 长距离移动的初步争论、证明其移动性的新证据,以及使用移动 FT mRNA 在植物中产生可遗传的跨代基因编辑。我们详细阐述了基于病毒的 RNA 移动性测定、植物嫁接、荧光蛋白标记的 RNA 以及 CRISPR/Cas9 基因编辑技术的证据,以证明除 FT 蛋白外,FT mRNA 也可以系统移动并作为开花信号的一个组成部分发挥作用。我们还提出了一个模型,以促进进一步研究这种重要的移动信号 RNA 在植物中长距离移动的分子机制。
• 在当今的全球经济中,国际贸易量增加了入侵(“非本地”)物种进入美国的可能性。 • 过去引入的非本地害虫和疾病严重损害了城市和乡村景观。收入损失和清理费用累计已达数十亿美元。 • 每年,入侵物种对美国经济造成超过 10 亿美元的损失。 • 这一成本不包括入侵物种对数亿英亩的本地生态系统、本地植物和动物造成的破坏。 • 两张照片都显示了翡翠灰螟对树木造成的破坏,翡翠灰螟是一种破坏性的蛀木甲虫,原产于中国和东亚的白蜡树。 • 据信,这种昆虫是通过货船或飞机运输的受污染木质包装材料 (WPM) 引入美国的,这些材料来自其原产地亚洲。 • 翡翠灰螟于 2002 年首次在美国被发现,目前已在 22 个州发现。 • 翡翠灰螟雌性在表面、裂缝和裂隙中的灰树皮上,或就在灰树外皮下产卵。 • 孵化后,幼虫立即开始咀嚼外皮,直至将营养物质散布到整个树的组织层。 • 幼虫在韧皮部中的 S 形隧道(称为通道)中进食。随着幼虫进食和成长,通道会变大。通道会破坏营养物质的运输
番茄 (Solanum lycopersicum L.) 嫁接主要用于防止土传病原体的危害和非生物胁迫的负面影响,不过使用高活力砧木也可以提高产量和果实品质。在低养分投入农业的背景下,将优良品种嫁接到具有更高氮利用效率 (NUE) 的砧木上可支持直接的产量最大化策略。在本研究中,我们评估了使用过量表达拟南芥 (AtCDF3) 或番茄 (SlCDF3) CDF3 基因的植物作为砧木来提高低氮投入下嫁接接穗的产量,此前有报道称这些基因可提高番茄的 NUE。我们发现 AtCDF3 基因可诱导更多的糖和氨基酸产生,从而使生物量和果实产量在充足和有限的氮供应下都更高。相反,SlCDF3 基因没有发现积极影响。激素分析表明,赤霉素 (GA 4 )、生长素和细胞分裂素 (tZ) 可能参与 AtCDF3 对 N 的反应。这两个基因引发的不同反应可能至少部分与 AtCDF3 转录本通过韧皮部到枝条的移动性有关。在该嫁接组合的叶片中,我们持续观察到转录因子靶基因(如谷氨酰胺合酶 2 (SlGS2) 和 GA 氧化酶 3 (SlGA3ox))的表达较高,这些基因分别参与氨基酸和赤霉素的生物合成。总之,我们的研究结果进一步深入了解了 CDF3 基因的作用方式及其在嫁接方法中的生物技术潜力。
摘要:传统上,螺原体仅从花和其他植物部位的表面、各种昆虫的内脏和血淋巴以及维管植物的液体(韧皮部汁液)和以这些液体为食的昆虫中分离出来。在本文中,我们报告了在虾中发现的第一种致病螺原体,以及通过组织学评估、原位杂交测定、透射电子显微镜、16S rRNA 序列同源性和注射感染性研究对其进行表征的结果。此外,还介绍了为检测这种微生物而开发的分子方法,该微生物被确定为哥伦比亚养殖的南美白对虾的病原体,导致其死亡率很高。使用标准组织学方法和原位杂交测定,证实南美白对虾感染了这种致病螺原体。组织学分析显示受影响器官/组织出现全身性炎症反应。为了鉴定细菌,使用来自初始流行区的冷冻感染南美白对虾样本对 16S rRNA 基因进行测序并开发分子检测方法。通过 PCR 扩增 16S rRNA 基因,然后进行测序。使用 GenBank BLAST 搜索分析序列数据,结果显示与柑橘树病原体柑橘螺原体有 98% 的同源性。对 16S rRNA 序列数据进行评估以开发针对假定螺原体的独特 PCR 引物。使用针对螺原体属的螺旋素基因开发的 PCR 引物,开发并测试了地高辛标记的探针。该探针是物种特异性的,与以此形式测试的其他细菌样本没有发生阳性反应或交叉反应。
半翅目昆虫的起源可以追溯到 2.3 亿年前的二叠纪晚期,远早于 1 亿年前的白垩纪开花植物的起源。半翅目昆虫用吸吮式喙进食流质食物;植食性半翅目昆虫的口器(刺)结构精巧,可以从植物木质部或韧皮部中贪婪地吸食食物。这种适应性使一些半翅目昆虫成为全球重要的农业害虫,每年造成严重的农作物损失。由于农业环境中依赖化学杀虫剂控制害虫,许多半翅目害虫已经进化出对杀虫剂的抗药性,因此迫切需要开发新的、针对特定物种的、对环境友好的害虫防治方法。 CRISPR/Cas9 技术在果蝇、赤拟谷盗、家蚕和埃及伊蚊等模型昆虫中的快速发展,引发了双翅目和鳞翅目新一轮的创新基因控制策略,也引发了人们对评估半翅目基因控制技术的兴趣。迄今为止,半翅目的基因控制方法在很大程度上被忽视,因为将遗传物质引入这些昆虫的生殖系存在问题。模型昆虫物种中 CRISPR 介导的诱变频率很高,这表明,如果能够解决半翅目的递送问题,那么半翅目的基因编辑可能很快实现。过去 4 年中,CRISPR/Cas9 编辑已在 9 种半翅目昆虫中取得了重大进展。这里我们回顾了半翅目昆虫的研究进展,并讨论了将当代遗传控制策略扩展到这一对农业具有重要意义的昆虫目物种所面临的挑战和机遇。