饮食中与健康个体积极和负面情绪相关的激活区域,从而创造了积极的情绪地图集(豌豆)和负面情绪地图集(NEA)。,我们使用这些地图集检查了抑郁症患者的神经影像变化,并根据机器学习评估了他们的诊断性能。结果:我们的发现表明,基于PEA和NEA的抑郁症患者的分类准确性超过0.70,与整个脑图相比,这是一种提高。此外,ALFF分析在NEA期间在八个功能簇中揭示了抑郁症患者与健康对照组之间的特殊差异,重点是左轴心,扣带回和上顶叶。在很重要的情况下,豌豆在15个簇中揭示了更明显的差异,其中涉及右fu型回,帕拉希帕克胶回和下顶叶下叶。结论:这些发现使情绪调节和抑郁症之间的复杂相互作用揭示了抑郁症患者的PEA和NEA的显着变化。这项研究增强了我们对抑郁症中情绪调节的理解,对诊断和治疗评估产生了影响。
深度神经网络 (DNN) 特征与皮质反应之间的一致性目前为更高级的视觉区域提供了最准确的定量解释 [1、2、3、4]。与此同时,这些模型特征也被批评为无法解释的解释,将一个黑匣子(人脑)换成了另一个黑匣子(神经网络)。在本文中,我们训练网络直接从头开始预测大脑对来自大规模自然场景数据集的图像的反应 [5]。然后,我们使用“网络解剖” [6],这是一种可解释的人工智能技术,通过识别和定位图像中已训练网络的各个单元中最显著的特征来增强神经网络的可解释性,该技术已用于研究人脑的类别选择性 [7]。我们采用这种方法创建了一个假设中立模型,然后使用该模型探索类别选择性之外的特定视觉区域的调节特性,我们称之为“大脑解剖”。我们利用大脑解剖来研究一系列生态上重要的中间特性,包括深度、表面法线、曲率和物体关系,这些特性贯穿顶叶、外侧和腹侧视觉流以及场景选择区域的子区域。我们的研究结果揭示了大脑各区域对解释视觉场景的不同偏好,其中腹外侧区域偏爱较近和较弯曲的特征,内侧和顶叶区域选择更多样化和更平坦的 3D 元素,而顶叶区域则特别偏爱空间关系。场景选择区域表现出不同的偏好,因为后压部复合体偏爱远处和户外特征,而枕叶和海马旁回区域偏爱近处、垂直性,而在 OPA 的情况下,偏爱室内元素。这些发现表明,使用可解释的人工智能揭示整个视觉皮层的空间特征选择性具有潜力,有助于更深入、更细致地了解人类视觉皮层在观看自然场景时的功能特征。
最近的证据表明,初级视觉皮层的作用不仅限于视觉处理,还包括行动规划等高级认知和运动相关功能,即使在没有前馈视觉信息的情况下也是如此。有人提出,在神经层面上,运动意象是基于运动表征的模拟,神经影像学研究表明,额叶和顶叶皮层中的运动意象和动作执行存在重叠和共享的活动模式。然而,早期视觉皮层在运动意象中的作用仍不清楚。在这里,我们对功能性磁共振成像 (fMRI) 数据进行了多体素模式分析,以检查是否可以从早期视觉皮层中目标物体的视网膜位置的活动模式中可靠地解码运动意象和动作意图的内容。此外,我们研究了特定动作之间的区分是否适用于想象和意图的动作。18 名右撇子人类参与者(11 名女性)想象或执行延迟的手部动作,朝向一个位于中心的物体,该物体由一个附着在大形状上的小形状组成。动作包括抓取大或小的形状,并伸手到物体的中心。我们发现,尽管不同的计划和想象运动的 fMRI 信号幅度相当,但早期视觉皮层以及背侧运动前区和前顶叶内皮层中的活动模式准确地代表了动作计划和动作意象。然而,无论动作是在顶叶皮层而不是早期视觉皮层或运动前区主动计划还是隐秘想象的,运动内容都是相似的,这表明只有在高度专门从事物体导向的抓取动作和运动目标的区域才存在广义的运动表征。总之,动作计划和意象在皮层动作网络中具有重叠但不相同的神经机制。
社交焦虑症 (SAD) 的特征是对社会评价的过度恐惧以及持续的自我负面认知。本文,我们检验以下假设:大脑反应和自我相关信息的社会学习中的负面偏见会导致 SAD 的负面自我形象和低自尊特征。被诊断患有社交焦虑的成年参与者 (N = 21) 和匹配的对照组 (N = 23) 在完成一项压力很大的公开演讲任务后,对自己的表现进行了评分,并获得了社交反馈。我们研究了正面和负面的社会反馈如何改变自我评价和状态自尊,并使用功能性磁共振成像 (fMRI) 来描述大脑对正面和负面反馈的反应。与对照组相比,SAD 参与者根据负面社会反馈更新自我评价和状态自尊的次数显著多于正面社会反馈。额顶叶网络的反应与这些行为效应相关并反映这些行为效应,非焦虑对照组对正面反馈的反应大于负面反馈,但 SAD 参与者则并非如此。前脑岛和其他脑区对社会反馈的反应介导了负面反馈与正面反馈对自我评价变化的影响。在非焦虑型参与者中,前顶叶脑区可能有助于积极的社会学习偏差。在季节性情感障碍 (SAD) 中,前顶叶脑区整体上被募集的程度较低,对正面反馈的适应性也较低,这可能反映了注意力分配和认知调节方面的差异。在 SAD 和其他内化障碍中,更偏向负面的脑反应和社会学习偏差可能导致维持负面的自我形象,从而为干预措施提供重要的新靶点。
大脑区域 1:大脑 - 大脑叶皮质及其功能(额叶、顶叶、颞叶、枕叶和岛叶) - 大脑对身体运动和感觉知觉的划分(中央前回和中央后回)。 - 大脑与语言(布罗卡区和韦尼克区以及失语症 - 大脑与睡眠 - 大脑与记忆 - 大脑核与运动功能 - 大脑核与情绪(边缘系统)
摘要 脑机接口 (BMI) 是恢复瘫痪患者功能的强大设备。利用神经记录技术、计算能力和对潜在神经信号的理解的重大进步,BMI 使严重瘫痪的患者能够控制外部设备,例如计算机和机器人肢体。然而,高性能 BMI 目前需要高度侵入性的记录技术,因此仅适用于小众人群。在这里,我们展示了一种基于功能性超声 (fUS) 成像的微创神经成像方法可用于检测和解码可用于 BMI 的运动意图信号。我们训练非人类灵长类动物进行记忆引导运动,同时使用硬膜外 fUS 成像记录后顶叶皮层的脑血容量变化 - 后顶叶皮层是大脑中对空间感知、多感觉整合和运动规划很重要的区域。使用在运动规划期间获得的血流动力学信号,我们对左提示运动和右提示运动进行了分类,从而确定了超声波 BMI 的可行性。这些结果证明了基于 fUS 的神经接口能够利用超声波的优异时空分辨率、灵敏度和视野,而不会破坏硬脑膜或物理穿透脑组织。
后顶叶皮层(PPC)在整合来自不同方式的感觉输入以支持适应性行为方面起着关键作用。PPC中的神经元活性反映了行为任务之间的感知决策,但是PPC的机理参与尚不清楚。在视听变更检测任务中,我们检验了以下假设:PPC是从两种不同模态的嘈杂输入之间进行的,并有助于确定发生感觉变化的方式。在训练有素的雄性小鼠中,我们发现了与任务相关的视觉和听觉刺激,试验史以及即将到来的行为反应的广泛的单神经元和人群级编码。,尽管这些丰富的神经相关性,理论上足以解决任务,但PPC的光学遗传失活并不影响视觉或听觉性能。因此,尽管神经相关忠实地跟踪感觉变量并预测行为反应,但PPC与视听变化检测无关。此功能解离质疑在视听变化检测过程中,感觉与任务相关的活动在顶叶关联电路中的作用。此外,我们的结果强调了在探索感知和行为的神经基础时与机械介入相关的分解功能的必要性。
结果:TMT A 部分期间,右额叶、左中央、左枕叶、左下额叶、右颞中叶、右后颞叶和中顶叶区 delta 波的脑电图功率水平显著高于静息态期间(P < .05),左后颞叶区 alpha 波的脑电图功率水平显著低于静息态期间(P = .006),左顶叶区(P = .05)和左枕叶区(P = .002)高 γ 波的脑电图功率水平显著低于静息态期间(P = .041),左额极区、右额叶和右下额叶区低 γ 波的脑电图功率水平显著高于静息态期间(P < .05)。在集中注意力任务中,δ波的功率水平增加,α波的功率水平降低;在交替注意力任务中,β波和γ波的功率水平均增加。δ波与整个大脑有关,α波和高γ波与左后叶有关,β波和低γ波与两个额叶有关。
手写、打字还是绘画——哪种策略最能提高课堂学习效率?随着数字设备越来越多地取代传统的手写,研究这种做法的长期影响至关重要。研究人员对 12 名年轻人和 12 名 12 岁儿童进行了高密度脑电图 (HD EEG),以研究他们在手写草书、打字或绘制难度各异的视觉呈现单词时的脑电活动。对使用 256 通道传感器阵列记录的 EEG 数据进行了时间频谱演变 (TSE,即随时间变化的幅度变化) 分析。对于年轻人,我们发现,当使用数字笔在触摸屏上手写时,顶叶和中部大脑区域在 θ 范围内显示出与事件相关的同步活动。现有文献表明,这些特定大脑区域的这种振荡神经元活动对于记忆和新信息的编码非常重要,因此为大脑提供了最佳的学习条件。在绘画时,我们发现顶叶区域存在类似的激活模式,此外,alpha/beta 范围内还存在与事件相关的去同步化,这表明绘画和手写时的激活模式既相似又略有不同。在键盘上打字时,我们发现顶叶和中脑区域的 theta 范围内存在与事件相关的去同步化活动,alpha 范围内存在与事件相关的去同步化活动,但程度较轻。然而,由于这种活动是不同步的,并且与手写和绘画时的活动不同,因此其与学习的关系仍不清楚。对于 12 岁的儿童,也发现了相同的激活模式,但程度较轻。我们认为,儿童从小就必须在学校接触手写和绘画活动,以建立有利于学习的神经元振荡模式。我们得出的结论是:由于感觉运动整合的益处,即由于手写和绘画时感官的广泛参与以及精细和精确控制的手部动作,在学习环境中保持这两种活动对于促进和优化学习至关重要。
发展性计算障碍 (DD) 是一种学习障碍,会影响数字算术技能的习得。患者在数字处理方面表现出持续的缺陷,这与大脑激活和结构异常有关。据报道,发展性计算障碍患者的顶叶皮层(包括顶内沟 (IPS))以及额叶和枕颞皮层灰质减少。此外,计算障碍患者的白质存在差异,例如下纵束 (ILF) 和上纵束 (SLF)。然而,这些结构差异的纵向发展尚不清楚。因此,我们的目标是研究患有和不患有发展性计算障碍的儿童的灰质和白质的发展轨迹。在这项纵向研究中,我们以 4 年为间隔两次收集了 13 名患有发展性计算障碍的儿童(8.2-10.4 岁)和 10 名正常发育 (TD) 儿童(8.0-10.4 岁)的神经心理学测量值和 T1 加权结构图像。使用基于体素的形态测量法对纵向数据进行体素级灰质和白质体积估计。本研究首次揭示了 DD 儿童在发育过程中灰质和白质体积持续减少。双侧下顶叶包括 IPS、缘上回、左楔前叶、楔叶、右枕上回、双侧颞下回和颞中回以及岛叶均发现灰质减少。双侧 ILF 和 SLF、下额枕束 (IFOF)、皮质脊髓束和右丘脑前部放射 (ATR) 的白质体积减少。在行为上,DD 儿童在基线和随访中在各种数字任务中的表现明显较差,证实了数字处理方面的持续缺陷。本研究结果与文献一致,文献表明 DD 儿童在数字网络中的灰质和白质体积减少。我们的研究进一步阐明了大脑发育的轨迹,揭示了这些已知的颞叶和额顶叶长联系纤维和相邻区域的结构差异