摘要 — 使用早期退化数据进行电池循环寿命预测在整个电池产品生命周期中具有许多潜在应用。因此,已经提出了各种数据驱动方法来对电池循环寿命进行点预测,而无需对电池退化机制有最少的了解。然而,以较低的经济和技术风险管理迅速增加的报废电池数量需要对循环寿命进行量化的不确定性预测,而这仍然缺乏。这些先进的数据驱动方法的可解释性(即高预测精度的原因)也值得研究。这里引入了一个分位数回归森林 (QRF) 模型,该模型的优点是不假设任何特定的循环寿命分布,除了高精度的点预测之外,还可以进行循环寿命范围预测,其中不确定性量化为预测区间的宽度。使用提出的 alpha-logistic 加权标准优化 QRF 模型的超参数,从而校准与预测区间相关的覆盖概率。通过两种全局模型不可知方法,即排列重要性和部分依赖图,探索最终 QRF 模型的可解释性。
通过脑解剖磁共振成像预测受试者的年龄有可能提供脑部变化的敏感摘要,从而指示不同的神经退行性疾病。然而,现有的研究通常忽略了这些预测的不确定性。在这项工作中,我们通过应用功能数据分析方法考虑了这种不确定性。我们针对阿尔茨海默病神经影像学计划 (ADNI) 中的认知正常 (CN) 受试者,提出了一个年龄与脑结构影响的惩罚功能分位数回归模型,并用它来预测轻度认知障碍 (MCI) 和阿尔茨海默病 (AD) 受试者的脑年龄。与脑年龄预测文献中可用的机器学习方法不同,它们只提供点预测,而我们的模型的结果是每个受试者的预测区间。
澳大利亚国家肺癌筛查计划将于 2025 年 7 月启动,针对年龄在 50-70 岁之间、吸烟史为 30 包年(相当于 30 年内每天吸烟 20 支)、目前吸烟或过去 10 年内已戒烟的个人。我们使用 2019 年国家药物战略家庭调查和 2022 年澳大利亚统计局人口预测的数据,预测了该计划前 5 年符合筛查条件的人数。结合未来或未测量的吸烟特征的预测模型,多重填补用于解决缺失数据,同时预测个人到 2030 年的吸烟史。2025 年,估计有 930 500 人(95% 预测区间为 852 200-1 019 000)符合条件,2025-2030 年间,所有澳大利亚辖区符合条件的人数略有下降。总体而言,符合条件的人中 26% 至 30% 将戒烟,70% 至 74% 目前仍吸烟。这些估计值可用于资源规划,并作为指示性分母来跟踪该计划的长期参与率。
智能电网中电力的供需缺口导致了能源预测和能源管理系统的引入。能源预测是智能电网系统规划和管理的关键参与者[1]。智能电网中的数据是借助高级计量基础设施(AMI)收集的,它可以测量双向电力流。数据分析应用程序使用这些数据进行预测。这些预测应用程序可用于发电调度、可再生能源发电厂的发电预测以及需求侧管理。在智能电网管理中,各种统计和机器学习预测方法已用于预测电力需求和发电量[2,3]。时间序列发电量和电力需求已使用统计预测方法来预测,包括自回归移动平均线(ARMA)、自回归积分移动平均线(ARIMA)和向量自回归(VAR)[4]。由于智能电网技术的最新进展,统计预测方法无法处理大量发电和需求数据。统计方法不能用于复杂和非线性的数据点[5]。随着机器学习和人工智能预测方法的进步,现在可以进行准确而精确的预测。非线性时间序列数据使用循环神经网络 (RNN) 和长短期记忆 (LSTM) 预测方法进行预测[6]。可再生能源融入智能电网引发了不确定性问题以及能源消费模式的变化。这些不确定性问题可以通过概率方法解决,因为与点预测相比,它们会生成预测区间[7-9]。通过将多种预测方法组合成一种称为混合预测方法的单一方法,可以提高预测精度[10]。多种预测方法的集成使混合模型更加复杂。因此,需要在预测结果和预测精度之间进行权衡。
本论文是与 Knowit、¨ Ostrand & Hansen 和 Orkla 合作完成的。旨在探索机器学习和深度学习模型与保形预测在 Orkla 预测性维护情况下的应用。预测性维护在许多工业制造场景中都至关重要。它可以帮助减少机器停机时间、提高设备可靠性并节省不必要的成本。在本论文中,各种机器学习和深度学习模型(包括决策树、随机森林、支持向量回归、梯度提升和长短期记忆)都应用于现实世界的预测性维护数据集。Orkla 数据集最初计划在本论文项目中使用。然而,由于遇到一些挑战和时间限制,我们选择了一个具有类似数据结构的 NASA C-MAPSS 数据集来研究如何应用机器学习模型来预测制造业的剩余使用寿命 (RUL)。此外,最近开发的用于测量机器学习模型预测不确定性的框架共形预测也被集成到模型中,以实现更可靠的 RUL 预测。论文项目结果表明,具有共形预测的机器学习和深度学习模型都可以更接近真实 RUL 预测 RUL,而 LSTM 的表现优于机器学习模型。此外,共形预测区间提供了有关预测不确定性的丰富而可靠的信息,这有助于提前通知工厂人员采取必要的维护措施。总体而言,本论文证明了在预测性维护情况下利用具有共形预测的机器学习和深度学习模型的有效性。此外,基于 NASA 数据集的建模结果,讨论了如何将这些经验转移到 Orkla 数据中,以便将来进行 RUL 预测的一些见解。关键词 机器学习、深度学习、不确定性估计、共形预测、预测性维护、RUL、概率预测、决策树、随机森林、支持向量回归、梯度提升、LSTM。