3. 10Grunheid T、Kolbeck Schieck JR、Pliska BT 等。锥形束计算机断层扫描机与
是国家卫生委员会内分泌委员会,北京北京医学科学院和北京北京的北京大学北京大学医学院医院部内分泌委员会,100730,B。致癌与翻译研究的主要实验室(北京教育部/北京部)(北京部),国家癌症医院,北京癌症医院,疾病学院。多模式人工智能系统,北京工程智能系统和技术研究中心,中国科学院自动化研究所,北京,北京,100190,中国D北国科学院d人工智能学院,北京大学,北京大学,100049,100049北京,100730,中国是国家卫生委员会内分泌委员会,北京北京医学科学院和北京北京的北京大学北京大学医学院医院部内分泌委员会,100730,B。致癌与翻译研究的主要实验室(北京教育部/北京部)(北京部),国家癌症医院,北京癌症医院,疾病学院。多模式人工智能系统,北京工程智能系统和技术研究中心,中国科学院自动化研究所,北京,北京,100190,中国D北国科学院d人工智能学院,北京大学,北京大学,100049,100049北京,100730,中国
斯科特·加尔斯特空军研究实验室 俄亥俄州赖特-帕特森空军基地 面部肌电图 (fEMG) 是一种肌电图测量技术,主要用作测量情感的工具,但之前的实验表明,它也有助于量化认知工作量。在当前的研究中,实时监测了两个与任务无关的面部肌肉,皱眉肌和额外侧肌,以确定它们是否对遥控飞机 (RPA) 任务环境中的工作量变化敏感。应用实时信号处理技术从窗口 fEMG 数据中得出中值幅度和零交叉率。对这些特征的统计分析确定,这两种肌肉都对特定工作量操纵的变化很敏感。这项研究表明,从上述肌肉中提取的实时 fEMG 特征有可能作为或有助于认知工作量的指标。未来的工作旨在改进 fEMG 数据收集技术,以产生更灵敏、更具代表性的适合工作量评估的测量方法。长时间保持警惕的能力对于航空航天领域的许多职位来说都至关重要。例如,飞行员、传感器操作员和空中交通管制员必须保持高水平的态势感知,以确保最佳的安全和性能。认知工作量是决定操作员在防止危险后果所需水平上执行能力的重要因素 (Young & Stanton, 2002)。认知超负荷和负荷不足都会导致性能下降,而适度的认知唤醒有助于实现理想的性能能力 (Cohen, 2011)。为了减轻航空航天操作员的警觉负担并帮助他们保持理想的表现,开发了感知-评估-增强 (SAA) 框架,以识别和缓解各种任务环境中的认知工作量不平衡 (Galster & Johnson, 2013)。由于认知工作量的变化已被证明与各种生理事件相关,因此可以应用该框架来感知航空航天操作员产生的一系列生理指标,将这些指标纳入可以评估操作员认知状态的模型中,然后增强操作员的表现以减轻认知超负荷或负荷不足引起的绩效下降 (Wilson & Russell, 2007; Hoepf, Middendorf, Epling, & Galster, 2015; Hoepf et al., 2016)。用于评估工作量 (Hoepf et al., 2016)。为了使基于 SAA 的工作负荷建模方法能够在广泛的任务环境中发挥作用,必须将大量生理测量作为模型的输入。操作员执行的任务的性质可能决定了每种生理测量(皮质、心脏等)的有用性。例如,在心算类型的任务中,发现皮质测量与工作负荷有很好的关联,而心脏测量对主要需要使用仪器的飞行任务中的工作负荷很敏感,而眼部测量与高度依赖视觉的飞行任务中的工作负荷有关(Hankins & Wilson,1998)。许多心理生理学家和工程师正在研究各种生理测量与认知工作负荷之间的相关性,试图进一步提高实时模拟个人认知状态的能力。面部肌电图 (fEMG) 是最近被探索作为认知工作负荷潜在指标的生理信号之一。fEMG 是一种肌电图 (EMG) 测量技术,通过感应和放大产生的微小电脉冲来描述肌肉活动
抽象的人情绪在塑造个人的经历和互动中起着关键作用。情绪是人类将自己的内心感传达给他人的主要手段,通常是通过手势和声音变形传达的。个人具有影响周围人的情绪状态的独特能力。人类,类似于高级机器,具有显着的预测能力和情绪提示的无与伦比的准确性。预测面部表情,包括微笑,眼动和微妙的面部肌肉运动,对于衡量个人当前的情绪至关重要。在苦恼或沮丧的时期,人们经常通过将可信赖的同伴或沉浸在音乐中寻求慰藉,这种治疗媒介既可以舒缓身心。利用这些见解,我们的项目旨在通过面部表情分析来预测个人的情绪,然后播放为他们的情绪量身定制的音乐,从而增强了一种镇定和情感的幸福感。此外,我们的项目还可以根据他们当前的情绪状态来策划个性化的播放列表,从而为情绪增强和自我保健提供途径。关键字:人类的情感,表达,音乐,情绪。
Lubrizol Advanced Materials, Inc.(“Lubrizol”)希望您对此建议的配方感兴趣,但请注意,这只是一种代表性配方,并非商业化产品。在适用法律允许的最大范围内,Lubrizol 不作任何陈述、保证或担保(无论是明示、暗示、法定或其他形式),包括任何关于适销性或特定用途适用性的暗示担保,或关于任何信息的完整性、准确性或及时性的暗示担保。Lubrizol 认为此配方所基于的信息和数据是可靠的,但配方尚未经过性能、功效或安全性测试。在商业化之前,您应彻底测试该配方或其任何变体,包括配方的包装方式,以确定其性能、功效和安全性。您有责任获得任何必要的政府批准、许可或注册。本文中包含的任何内容均不得视为未经专利所有者许可而实施任何专利发明的许可、建议或诱导。与此配方相关的任何索赔可能并非在所有司法管辖区都获得批准。安全处理信息不包括安全使用所需的产品安全信息。操作前,请阅读所有产品和安全数据表以及容器标签,了解安全使用和物理及健康危害信息。您可从路博润代表或经销商处获取此配方路博润产品的安全数据表。
坚强地识别面孔的能力对于我们作为社会生物的成功至关重要。然而,我们仍然对允许某些人在面部识别方面表现出色的大脑机制知之甚少。这项研究建立在一个相当大的神经数据集的基础上,该数据集测量了具有非凡的面部识别能力的人的大脑活动(super-coppenters),以应对这一挑战。使用最先进的计算方法,我们从仅仅一秒钟的大脑活动中就显示出对单个个体中面部识别能力的强大预测,并揭示了支持个人识别能力中个体差异的特定大脑计算。这样做,我们提供了直接的经验证据,证明了人类大脑中语义计算与面部识别能力之间的关联,这是突出的面部识别模型的关键组成部分。
为什么有些人更好地识别面孔?发现支持面部识别能力的神经机制已被证明难以捉摸。为了应对这一挑战,我们使用了一种多模式数据驱动的方法,该方法结合了神经影像,计算建模和行为测试。我们记录了具有非凡的面部识别能力的个体的高密度脑电图脑活动 - 超级识别器 - 以及典型的识别剂,以应对各种视觉刺激。使用多元模式分析,我们从1 s的大脑活动中解码了面部识别能力,精度最高为80%。为了更好地理解该解码的机制,我们将参与者的大脑中的表示形式与人工神经网络模型的视觉和语义模型以及参与人类形状和含义相似性的判断的人进行了比较。与典型的识别者相比,我们发现超级识别器的早期大脑表示与视觉模型的中级表示以及形状相似性判断之间的相关性更强。此外,我们发现超级识别器的晚期大脑表示与人工语义模型的表示之间以及含义相似性判断之间的更强关联。总体而言,这些结果表明,大脑处理中的重要个体变化,包括神经计算扩展到纯粹的视觉过程,支持面部识别能力的差异。他们为语义计算与面部识别能力之间的关联提供了第一个经验证据。我们认为,这种多模式数据驱动的方法可能会在进一步揭示人脑中特质识别的复杂性方面发挥关键作用。
目的:本研究旨在通过系统的文献综述来验证面部练习对面部复兴的影响。方法:资格标准包括两性成年人的人口,面部锻炼面临,并在面部锻炼前后进行了比较组。根据Joanna Briggs Institute(JBI)指南评估了偏见的风险。文献综述:在最终数据库搜索中总共检索了608篇文章,其中7篇文章在选择过程后包括在其中7篇文章。所有包含的文章都表明,面部运动或按摩后皱纹和表达线得到了改善。案例系列研究的判断发现它们的偏见风险很低,两项病例对照研究的偏见风险中等。结论:面部锻炼有效地减弱了面部衰老的迹象。然而,基于随机临床试验,需要更一致的证据来得出更鲁棒的结论。关键字:老化;美学;脸;恢复活力;语音,语言和听力科学
数据依赖性是人工智能的固有特性之一。个人数据对于训练机器学习系统和构建算法模型的数据集至关重要。一旦模型建立,它们就可以应用于个人数据,并用于分析或对特定个人进行推断和预测。这也适用于实时面部识别系统,这意味着多项个人权利面临风险,尤其是隐私权。在本简报中,我们将这些系统的实施框架定为公共当局出于执法目的在公共空间进行监视的特定背景。隐私、同意和相称性是描述公共空间监视的道德规范和考虑负责任地实施此类人工智能系统所需的三个相互交织的方面。