数字波形 33 幅移键控 (ASK) 33 频移键控 (FSK) 34 连续相频移键控 (CPFSK) 35 双频移键控 (DFSK) 35 恒定包络 4 级频率调制 (C4FM) 36 最小频移键控 (MSK) 37 适配频率调制 (TFM) 38 高斯最小频移键控 (GMSK) 38 多频移键控 (MFSK) 38 相移键控 (PSK) 40 二进制相移键控 (BPSK) 40 正交相移键控 (QPSK) 42 偏移正交相移键控 (OQPSK) 44 交错正交相移键控 (SQPSK) 44 兼容差分偏移正交相移键控 (CQPSK) 44 相干相移键控(CPSK) 45 差分相干相移键控 (DCPSK) 45 8PSK 调制 45 差分相移键控 (DPSK) 46 差分二进制相移键控 (DBPSK) 46 差分正交相移键控 (DQPSK) 46 差分 8 相移键控 (D8PSK) 46 正交幅度调制 (QAM) 47 正交频分复用 (OFDM) 49 扩频 (SS) 51 直接序列扩频 (DSSS) 51 跳频扩频 (FHSS) 52 增量频率键控 (IFK) 52 模拟脉冲调制 53
数字波形 33 幅移键控 (ASK) 33 频移键控 (FSK) 34 连续相频移键控 (CPFSK) 35 双频移键控 (DFSK) 35 恒定包络 4 级频率调制 (C4FM) 36 最小频移键控 (MSK) 37 适配频率调制 (TFM) 38 高斯最小频移键控 (GMSK) 38 多频移键控 (MFSK) 38 相移键控 (PSK) 40 二进制相移键控 (BPSK) 40 正交相移键控 (QPSK) 42 偏移正交相移键控 (OQPSK) 44 交错正交相移键控 (SQPSK) 44 兼容差分偏移正交相移键控 (CQPSK) 44 相干相移键控(CPSK) 45 差分相干相移键控 (DCPSK) 45 8PSK 调制 45 差分相移键控 (DPSK) 46 差分二进制相移键控 (DBPSK) 46 差分正交相移键控 (DQPSK) 46 差分 8 相移键控 (D8PSK) 46 正交幅度调制 (QAM) 47 正交频分复用 (OFDM) 49 扩频 (SS) 51 直接序列扩频 (DSSS) 51 跳频扩频 (FHSS) 52 增量频率键控 (IFK) 52 模拟脉冲调制 53
液晶作为一种优良的电光材料,具有效率高、工作光谱范围广、可采用多种外场刺激(如电场/磁场、光照、热量)等优点,被广泛应用于光场调制。此外,其他材料如二氧化硅和一些氧化物基超表面、超材料、光子晶体、铌酸锂基非线性晶体等也在光场调制中发挥着独特的优势。关键词: - 光场调制 - 空间结构光束 - 相位 - 振幅 - 偏振 - 空间光调制 - 时域调制 - 频率调制 - 液晶
由于Lidar已成为传感器世界中的热门话题,这主要是由于ADA和自动驾驶领域的努力,因此已经出现了关于直接检测(或飞行时间)还是相干(例如,频率调制连续波,例如)光子检测是最佳的辩论。实际上,“最佳”在很大程度上取决于应用程序。LIDAR用于从交通管理,驾驶员援助和自动驾驶,地面映射到气象应用的各种应用中。不同的激光雷达性能指标的重要性 - 最大范围,准确性,干扰免疫,成本等。- 因应用程序而异。即使在同一应用程序中,某些系统选择也可能偏向一个或另一个参数的重要性。本文旨在讨论直接和连贯检测的不同特征,以教育对LiDAR感兴趣的人并允许他们做出知情的系统选择。
频率调制 (FM)。图 3a 中的框图描述了振幅和相位检测以及 FM 模式。在振幅和相位检测模式下,LiftMode 扫描期间没有反馈;即,使悬臂振荡的驱动信号具有恒定频率。通过绘制悬臂的相位或振幅与平面坐标的关系,可以生成 3-D EFM 图像。在 FM 模式下,悬臂振荡的相位是相对于高分辨率振荡器的驱动信号的相位来测量的。相位差用作反馈方案中的误差信号;即,驱动信号的频率被调制(图 3a 中的“频率控制线”),以使悬臂振荡相对于驱动信号保持恒定相位。然后绘制驱动信号频率的调制与平面坐标的关系,从而创建 3-D EFM 图像。
我们将重点介绍 KPFM 的基本原理及其在无机纳米结构和纳米材料中的应用,例如碳纳米管 (CNT)、石墨烯、纳米晶体、Si 基纳米器件等。我们将回顾用于电测量的开尔文探针法的物理背景,然后重点介绍两种 KPFM 方法:一种称为幅度调制 KPFM (AM-KPFM),另一种称为频率调制 KPFM (FM-KPFM)。我们还将讨论一种特殊的方法,无反馈 KPFM,用于检测高电压。然后,我们将分析如何通过仪器实现上述 KPFM 方法以及影响 KPFM 分辨率、准确度、灵敏度和重复性的因素。最后,我们将讨论 KPFM 在无机纳米结构和纳米材料表征中的应用。我们将主要关注五个 KPFM 应用:表面电荷检测、功函数和掺杂水平研究、电荷转移研究、场效应晶体管和原子分辨率 KPFM。
2 Kasetsart大学工程学院,Kasetsart University,Ngamwongwan Road 50,Ladyao,Chatuchak,Chatuchak,Bangkok 10900,泰国电子邮件:a,* tiwat.pon@nectec.or.th(通讯作者) la-or.kovavisaruch@nectec.or.th,e kamol.kaemarungsi@nectec.or.th摘要。 频率调制连续波(FMCW)雷达前端模块是NECTEC NSTDA的实验室原型开发的。 通过在室外环境中铝板的反射测试来验证所提出的原型的性能。 在前端原型和铝板之间的距离的每20米处测量频谱分析仪的频域数据,直到达到200米的最大距离为止。 提出了在不同反射铝板范围内的BEAT频率的计算。 测量距离和计算的距离之间的最大误差不超过5.02%。 分析了反射物体的不同雷达横截面(RC)的影响为0.3、0.8和1.5 m 2板面积。 获得了0.66%的每个平方仪单位面积的不同接收功率比的低值,以证明反射功率水平在测试的对象的不同大小上的一致性。 关键字:雷达,FMCW,节拍频率,RCS。2 Kasetsart大学工程学院,Kasetsart University,Ngamwongwan Road 50,Ladyao,Chatuchak,Chatuchak,Bangkok 10900,泰国电子邮件:a,* tiwat.pon@nectec.or.th(通讯作者) la-or.kovavisaruch@nectec.or.th,e kamol.kaemarungsi@nectec.or.th摘要。频率调制连续波(FMCW)雷达前端模块是NECTEC NSTDA的实验室原型开发的。通过在室外环境中铝板的反射测试来验证所提出的原型的性能。在前端原型和铝板之间的距离的每20米处测量频谱分析仪的频域数据,直到达到200米的最大距离为止。提出了在不同反射铝板范围内的BEAT频率的计算。测量距离和计算的距离之间的最大误差不超过5.02%。分析了反射物体的不同雷达横截面(RC)的影响为0.3、0.8和1.5 m 2板面积。获得了0.66%的每个平方仪单位面积的不同接收功率比的低值,以证明反射功率水平在测试的对象的不同大小上的一致性。关键字:雷达,FMCW,节拍频率,RCS。
文献中用于微无人机检测的大多数雷达系统基于频率调制连续波形(FMCW)雷达[8-11],并且使用Pulse-Doppler(PD)雷达在系统上的作品很少。PD雷达具有相对较高的发射功率以及长时间的工作范围。在本文中,我们提出了一种形状辅助目标检测方法,用于使用PD架构进行微型无人机监视雷达,以减轻地面上高散射点引起的错误警报。根据目标测量和基于HU矩的形状提取方法,提出的分割阈值选择方法组成了分割阈值选择方法。由作者的研究小组开发的PD雷达系统验证了所提出的方法的性能,显示出可行性在减轻微无散检测中的剪切器引起的虚假警报方面具有良好的可行性。