量子点(QDS)是指具有量子实现效应的零维分号材料,通常由IV,II – VI,IV – VI或III – V元素组成,其大小约为1 nm – 10 nm。由于电子和孔的波函数在空间上结合到小于散装材料的BOHR半径的大小,因此出现了能级的量化,这与粒子中的A-box模型类似。[1,2] QD的离散能级产生原子,例如发射频谱宽度,导致高颜色纯度。[3 - 6] QD的能级分布可以通过其组成和大小来控制,这使得它们的发光能够连续调节以覆盖整个可见光带,从而在发射显示的范围内具有巨大的潜力。[7 - 10]
摘要:空腔量子电磁性的中心主题是单个光学模式与单个物质激发的耦合,导致双腔极化子的双重组控制耦合构成的光学特性。尤其是在Ultrastrong耦合方案中,那里的真空狂欢频率与光的准载体频率的比率是ωr ∕ c,接近Unity,Polariton Doublet Bridges巨大的频谱宽度2ωr,以及与偏离光和物质模式的进一步相互作用。尽管增加了复杂性,但由于增加了设计光 - 耦合共振的自由度,因此最终的多模式耦合最近引起了人们的注意。在这里,我们通过实验实现了一种新型策略,以通过在子波量表上定制多种平面金属Thz共振器的多种模式的空间过度雕刻超强的多模式耦合,以及多种平面金属THZ谐振器的空间过度和多种模式的降级两维电子的回旋量。我们显示
具有低维度(如量子点和量子破折号)的抽象半导体纳米结构是实现高性能光子设备的最具吸引力和启发式解决方案之一。当纳米晶方法的一个或多个空间维度时,纳米级的大小效应会产生载体的空间量化,从而使能量水平的完全离散化以及其他量子现象以及其他量子现象(如纠缠 - photon产生或挤压光态)。本文回顾了我们最新的基于纳米结构的光发射器的发现和前景,其中用量子点和量子扣纳米结构制成活跃区域。从基于硅的集成技术到量子信息系统的许多应用都依赖于此类激光源的利用。在这里,我们将材料和基本属性与设备物理联系起来。为此,仔细检查了频谱宽度,极化各向异性,光学非线性以及微波,动态和非线性特性。该论文重点是在天然基材(INP和GAA)上生长的光子设备,以及在硅底物上生长的异质和外展生长的光子设备。这项研究将使用纳米结构作为获得媒体的光发射器开发的最令人兴奋的最新创新,并突出了纳米技术对工业和社会的重要性,尤其是塑造未来的信息和通信社会。
为了研究爆破振动波在软岩隧道中的传播规律,在木寨岭隧道进行了纵向和环向爆破振动试验,并利用萨多夫非线性回归、傅里叶变换、希尔伯特-黄变换(HHT)等方法对实测数据进行了分析研究,为木寨岭隧道或类似软岩隧道爆破设计优化提供参考。研究结果表明:随着比例药量的增加,切向主频迅速下降,径向主频下降缓慢。在一定药量下,随着距爆源距离的增加,爆破振动频率频谱宽度变窄,整体能量更加集中,振动频率趋于低频。在距爆源一定距离处,随着药量的增加,爆破振动频率逐渐下降,低频区幅值增大。隧道左侧振动速度大于右侧,在拱顶和下台阶拱脚处振动速度下降较快,上台阶和中台阶拱脚处振动速度下降较慢;中台阶左拱脚和上台阶右拱脚的振动频率高于其他位置,上台阶左拱脚的频率最低。隧道爆破过程中,输入到地层介质的能量主要集中在切洞爆破阶段,爆破对上台阶左拱脚和隧道拱顶的能量输入较多,与频率分析的结论一致。