在硬壁、封闭截面风洞中进行测量对于开发安静的飞机和验证计算结果是理想的,而开放式喷气消声设施在声学上是更好的测量环境;封闭截面风洞对测试条件的空气动力学特性提供了很高的信心。飞机的气动噪声仍然是政府和工业界面临的主要问题,封闭截面风洞中声学测量的准确性和有效性至关重要。该项目始于现有概念;增强和修改技术以适应各种风洞设施。在工业环境中成功实施麦克风阵列后,开始了进一步的研究以改进物理技术。此类测试的限制之一是使用安装在风洞壁上的麦克风阵列时信噪比 (SNR) 较差。这可能会限制辨别接近或低于设施背景噪声水平的声源的能力。本研究的第二部分旨在研究传感器安装细节如何帮助提高信噪比。本报告介绍了麦克风安装策略的系统研究。结果表明,将单个麦克风凹进麦克风直径 (d) 的深度 (最多 2d) 可带来高达 3dB 的改善。将凹进深度增加到 2d 以上可带来高达 10dB 的改善,凹进深度达到 10d 可带来高达 20dB 的改善。最大的改善发生在 25 kHz 以下,尽管在 0 到 48 kHz 范围内也有改善。埋头凹槽的效果要么没有改善,要么背景噪声水平增加高达 20dB,这可能是由于凹槽孔径内的腔模式振荡。观察到不同密度的 Kevlar 布和丝绸覆盖物之间的 SNR 存在显著差异。当在凹进阵列的地板上添加声学泡沫衬里时,观察到背景噪声水平降低了 5 到 10dB。总体而言,这项研究的结论是,使用带有声学泡沫衬里的凹进阵列可以显著提高硬壁风洞测试中的麦克风阵列 SNR。研究的最后一部分旨在找到改进给定数量传感器的麦克风阵列的方法,观察风洞中测试模型的噪声源的方向性。主要关注的是找到阵列作为源定位可行工具的范围,并确定阵列范围极端处的源的误差,以改进未来的测量技术。
高质量测量的可用性被认为是了解模型不确定性以及验证和改进气动风力涡轮机模型的最重要先决条件。然而,传统的风力涡轮机实验程序通常不能为此提供足够的信息,因为它们只测量集成的总(叶片或转子)负载。这些负载由气动和质量诱导分量组成,它们在一定的翼展长度上集成。在 80 年代末和 90 年代,人们意识到需要更直接的气动信息来改进气动建模。为此,一些研究所启动了实验计划,测量压力分布以及由此产生的不同径向位置的法向和切向力。在 IEA Wind 的支持下,许多这些测量结果被存储在任务 14 的数据库中
摘要:设计并测试了一种用于现场测量动态充气机翼上下表面内外压差的仪器系统,揭示了充气翼型的空气动力学特性的重要见解。风洞试验证明了低压差读数在 1.0–120 Pa 范围内的全部能力,覆盖 3 至 10 m/s 的速度,攻角从 − 20 到 +25 ◦。读数稳定,在运行飞行范围内的变化系数为 2% 至 7%。实验数据证实了底部前缘再循环气泡的出现,与低雷诺数状态和进气口的存在有关。它支持基于局部压力差的空气动力学特性新方法的提议,该方法考虑了受限的气流结构并提供与实际观察相符的升力估计。结果也与之前按照不同策略获得的数据兼容,并被证明可以有效地参数化膨胀和失速现象。总体而言,该仪器可以直接用作飞行测试设备,并且可以进一步转换为崩溃警报和预防系统。
摘要 — 风荷载是设计结构时要考虑的最重要因素之一。在先前的研究中,使用了多种方法来测试和测量风荷载——全尺寸测量、风洞测量、分析模型和计算流体动力学 (CFD)。在这些方法中,一些研究人员选择了不同类型的参数来量化风荷载。虽然一些参数仅关注风荷载的一两个方面,但 CFD 模拟提供了对建筑物对风荷载响应的更全面测量。除了 CFD 的定量测量外,其 3D 可视化轮廓功能还可以提供有关风荷载的更详细信息,这可以极大地帮助建筑设计和设计优化。关键词— 3D 可视化轮廓、计算流体动力学 (CFD)、压力系数、Strauhoul 数、风荷载、风洞。
摘要 — 风荷载是结构设计时需要考虑的最重要因素之一。在之前的研究中,人们使用了多种方法来测试和测量风荷载——全尺寸测量、风洞测量、分析模型和计算流体动力学 (CFD)。在这些方法中,一些研究人员选择了不同类型的参数来量化风荷载。虽然一些参数只关注风荷载的一两个方面,但 CFD 模拟可以更全面地测量建筑物对风荷载的响应。除了 CFD 的定量测量外,其 3D 可视化轮廓绘制功能还可以提供有关风荷载的更详细信息,从而极大地帮助建筑设计和设计优化。关键词 — 3D 可视化轮廓绘制、计算流体动力学 (CFD)、压力系数、Strauhoul 数、风荷载、风洞。
最终报告 IEA Wind 附件 XX:HAWT 空气动力学和风洞测量模型 NREL/TP-500-43508 2008 年 12 月 运营代理代表:S. Schreck 国家可再生能源实验室 国家风技术中心 美国科罗拉多州戈尔登 报告贡献者:C. Masson、École de Technologie Supérieure (ETS)、加拿大 J. Johansen、NN Sorensen、F. Zahle, C. Bak, 和 HA Madsen, Risoe DTU,丹麦 E. Politis,可再生能源中心,希腊 G. Schepers, K. Lindenburg, H. Snel,荷兰能源研究中心 RPJOM van Rooij, EA Arens, GJW van Bussel, GAM van Kuik, F. Ming, T. 圣代尔夫特理工大学,荷兰 A. Knauer, G. Moe,能源技术研究所,挪威科技大学 X. Munduate、A. González、E. Ferrer、S. Gomez、G. Barakos,西班牙国家可再生能源中心 S. Ivanell,瑞典哥特兰大学与皇家理工学院 S. Schreck,美国国家可再生能源实验室
校对测量,风洞试验中的动态试验。常规试验中的测量参数有平衡信号、升力、阻力、侧向力、偏航力矩、俯仰力矩、操纵面的各种铰力矩。平衡室压力、平衡室温度、模型底部压力、风洞总压、静压、总温、迎角:大概有十几个到二十几个参数。模型表面压力测量参数有几十个点到几个干点。风洞压力测量参数有几十个点到几百个规模。动态试验参数有脉动压力和各种交变振动信号。一般有十几个点到几十个点。 C 风洞测量原则 风洞实验数据质量的高低是通过实验数据不确定度大小的多少来评定的,数据不确定性的评定是整个风洞实验的关键我们在设计一个试验研究的过程,给出了风洞实验的研究流程以及影响实验数据不确定度的因素,做了以下工作: (1)风洞实验的目的和实验数据的不确定度分析,同时提出,在进行实验设计的同时,对实验数据的不确定度进行估计; (2)实验数据的不确定度分析贯穿于实验的整个过程; (3)实验数据的质量对于风洞实验具有“一票否决权”; (4)实验数据的不确定性分析与估计是实验报告的重要组成部分; (5)实验设计和测试系统的可靠性是保证实验数据质量的关键方面; (6)没有考虑空气的压缩性; (7)考虑了空气的压缩性。